线状谱,吸收谱,条带谱,连续谱等光谱的区别是什么?
他们之间的关系是:连续态光谱和线状光谱都是发射条带/吸收光谱,后两者包含前两者。
一、唯一区别是定义不同
1、连续光谱是原子中处于束缚态的电子跃迁到自由散射态或者相反所产生的发射/吸收光谱, 因为没有确定的能级间隔, 表现出宽泛的 ,不确定的光谱带, 叫做连续光谱。
2、线状光谱是原子中电子的两个束缚态能级之间跃迁所产生的发射/吸收光谱,因为能级之间的间隔是确定的并且是离散的 ,表现出尖锐的光谱线, 叫做线状光谱。
3、吸收光谱是指原子与光子相互作用导致原子的电子跃迁到高能级所表现出来的对光线的吸收效应(对应暗线)。
4、条带光谱是指相反的过程, 也就是激发态的原子中电子从高能级跃迁到低能级, 释放的能量以光子形式释放出来,这就是发射光谱(明线、明带)。
扩展资料
按产生本质,光谱可分为分子光谱与原子光谱。
在分子中,电子态的能量比振动态的能量大50~100倍,而振动态的能量又比转动态的能量大50~100倍。因此在分子的电子态之间的跃迁中,总是伴随着振动跃迁和转动跃迁的,因而许多光谱线就密集在一起而形成分子光谱。因此,分子光谱又叫做带状光谱。
在原子中,当原子以某种方式从基态提升到较高的能态时,原子内部的能量增加了,原子中的部分电子提升到激发态,然而激发态都不能维持,在经历很短的一段随机的时间后,被激发的原子就会回到原来能量较低的状态。
参考资料来源:百度百科-光谱
参考资料来源:百度百科-吸收光谱
参考资料来源:线状光谱 百度百科
参考资料来源:连续光谱 百度百科
①线状光谱。由狭窄谱线组成的光谱。单原子气体或金属蒸气所发的光波均有线状光谱,故线状光谱又称原子光谱。当原子能量从较高能级向较低能级跃迁时,就辐射出波长单一的光波。严格说来这种波长单一的单色光是不存在的,由于能级本身有一定宽度和多普勒效应等原因,原子所辐射的光谱线总会有一定宽度(见谱线增宽);即在较窄的波长范围内仍包含各种不同的波长成分。原子光谱按波长的分布规律反映了原子的内部结构,每种原子都有自己特殊的光谱系列。通过对原子光谱的研究可了解原子内部的结构,或对样品所含成分进行定性和定量分析。
②带状光谱。由一系列光谱带组成,它们是由分子所辐射,故又称分子光谱。利用高分辨率光谱仪观察时,每条谱带实际上是由许多紧挨着的谱线组成。带状光谱是分子在其振动和转动能级间跃迁时辐射出来的,通常位于红外或远红外区。通过对分子光谱的研究可了解分子的结构。
③连续光谱。包含一切波长的光谱,赤热固体所辐射的光谱均为连续光谱。同步辐射源(见电磁辐射)可发出从微波到X射线的连续光谱,X射线管发出的轫致辐射部分也是连续谱。
④吸收光谱。具有连续谱的光波通过物质样品时,处于基态的样品原子或分子将吸收特定波长的光而跃迁到激发态,于是在连续谱的背景上出现相应的暗线或暗带,称为吸收光谱。每种原子或分子都有反映其能级结构的标识吸收光谱。研究吸收光谱的特征和规律是了解原子和分子内部结构的重要手段。吸收光谱首先由J.V.夫琅和费在太阳光谱中发现(称夫琅和费线),并据此确定了太阳所含的某些元素。
看一下原子物理学,说的比这跟清楚
参考资料: 百度百科
连续谱就是数量众多的线状谱组成的波长或频率连续一系列光谱。
条带谱限定在一定的波长或频率范围的连续谱。
吸收谱是连续谱通过某一空间是遇到原子,每一种原子都要吸收一定特定频率的光,使原来连续的光不连续了,而形成缺乏某一些频率的光(暗线),补充相应的线状谱又可以变成连续谱。
光谱分析的主要用途就是鉴别物质成分。