已知数列{an}的通项an=(n+1)(10/11)^n(n属于正整数),试问该数列{an}有没有最大值?求最大值的的项数。
1个回答
2013-10-20 · 知道合伙人软件行家
关注
展开全部
an=(n+1)(10/11)^n
=> a(n+1)=(n+2)(10/11)^(n+1)
=>a(n+1)/an=[(n+2)(10/11)^(n+1)]/[(n+1)(10/11)^n]=[(n+2)*10/11]/(n+1)=[10(n+2)]/[11(n+1)]
=>令a(n+1)/an>1,即[10(n+2)]/[11(n+1)]≥1,得n≤9
说明数列从a1~a9为递增的,然后a9,a10,....又是递减的,
因此a9就是最大项
=> a(n+1)=(n+2)(10/11)^(n+1)
=>a(n+1)/an=[(n+2)(10/11)^(n+1)]/[(n+1)(10/11)^n]=[(n+2)*10/11]/(n+1)=[10(n+2)]/[11(n+1)]
=>令a(n+1)/an>1,即[10(n+2)]/[11(n+1)]≥1,得n≤9
说明数列从a1~a9为递增的,然后a9,a10,....又是递减的,
因此a9就是最大项
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询