已知数列{an}的通项an=(n+1)(10/11)^n(n属于正整数),试问该数列{an}有没有最大值?求最大值的的项数。

 我来答
tony罗腾
2013-10-20 · 知道合伙人软件行家
tony罗腾
知道合伙人软件行家
采纳数:1381 获赞数:293900
本一类院校毕业,之前参与过百度专家的活动,有网络在线答题的经验,相信我,没错的!

向TA提问 私信TA
展开全部
an=(n+1)(10/11)^n
=> a(n+1)=(n+2)(10/11)^(n+1)
=>a(n+1)/an=[(n+2)(10/11)^(n+1)]/[(n+1)(10/11)^n]=[(n+2)*10/11]/(n+1)=[10(n+2)]/[11(n+1)]
=>令a(n+1)/an>1,即[10(n+2)]/[11(n+1)]≥1,得n≤9
说明数列从a1~a9为递增的,然后a9,a10,....又是递减的,
因此a9就是最大项
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式