求极限 lim(x->0)[√(1+tanx)-√(1+sinx)]/[x√(1+sin²x)-x]

terminator_888
推荐于2019-07-03 · TA获得超过8792个赞
知道大有可为答主
回答量:1680
采纳率:100%
帮助的人:811万
展开全部
lim(x->0) [√(1+tanx)-√(1+sinx)]/[x√(1+sin²x)-x]
=lim [√(1+tanx)-√(1+sinx)]*[√(1+tanx)+√(1+sinx)] / [x√(1+sin²x)-x]*[√(1+tanx)+√(1+sinx)]
=lim [(1+tanx)-(1+sinx)]*[√(1+sin²x)+1] / x*[sin²x]*[√(1+tanx)+√(1+sinx)]
=lim [tanx-sinx]*[√(1+sin²x)+1] / x*[sin²x]*[√(1+tanx)+√(1+sinx)]
=lim [tanx-sinx] / x*[sin²x] * lim [√(1+sin²x)+1] / [√(1+tanx)+√(1+sinx)]
=lim [tanx-sinx] / x*[sin²x]
=lim [1/cosx - 1] / x*sinx
根据等价无穷小
=lim x^2 / 2x^2
=1/2
有不懂欢迎追问
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式