一元二次不等式常见的解法有哪些?
1个回答
展开全部
1、公式求解。简单地说就是按照公式,如完全平方式、十字相乘法等一般公式,进行分解或者合成。举个例子吧,平方我用2表示。x2+2x-3=0化简成:x2+2x+1=4再化简成:(x+1)2=4明白了?
2、图像法。这个只能解决一般问题,一般不采用,用于需要知道解的大体情况时。比如,有几个解啊,是正是负啊。
3、用一般公式。先把方程化简成a2x+bx+c=0的形式,再用公式,一定是越简单越好,因为运算很麻烦,需要很好的计算能力。Δ=b^2-4ac,如果Δ大于0,有2实数解,Δ=0,有一个实数解,Δ小于0,无实数解。(这里不讲虚数,估计你没学到)。然后,一个解x1=[-b+(b^2-4ac)^(1/2)]/2a,另一个解x2=[-b-(b^2-4ac)^(1/2)]/2a
4、还有一个解法,但是不常用,就是韦达定理。
一元二次方程ax^2+bx+c=0 (a≠0 且△=b^2-4ac≥0)中 设两个根为X1和X2 则X1+X2= -b/a X1*X2=c/a ,再把两根当做x、y,求解一个二元二次方程。
5.数型结合
2、图像法。这个只能解决一般问题,一般不采用,用于需要知道解的大体情况时。比如,有几个解啊,是正是负啊。
3、用一般公式。先把方程化简成a2x+bx+c=0的形式,再用公式,一定是越简单越好,因为运算很麻烦,需要很好的计算能力。Δ=b^2-4ac,如果Δ大于0,有2实数解,Δ=0,有一个实数解,Δ小于0,无实数解。(这里不讲虚数,估计你没学到)。然后,一个解x1=[-b+(b^2-4ac)^(1/2)]/2a,另一个解x2=[-b-(b^2-4ac)^(1/2)]/2a
4、还有一个解法,但是不常用,就是韦达定理。
一元二次方程ax^2+bx+c=0 (a≠0 且△=b^2-4ac≥0)中 设两个根为X1和X2 则X1+X2= -b/a X1*X2=c/a ,再把两根当做x、y,求解一个二元二次方程。
5.数型结合
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询