1个回答
展开全部
∫(1/cosx + a)dx
=∫(1/cosx)dx + a*(2π - 0)
=2πa + ∫{1+[tan(x/2)]^2}/{1-[tan(x/2)]^2} dx 注:cosx = {1-[tan(x/2)]^2}/{1+[tan(2/x)]^2}
=2πa + 1/2*∫[sec(2/x)]^2 d(x/2)/{1-[tan(x/2)]^2} 注:(secα)^2 = 1 + (tanα)^2
=2πa + 1/2*∫d[tan(x/2)]/{1-[tan(x/2)]^2} 注:(tanα)' =(secα)^2
=2πa + 1/2*1/2*∫{1/[1-tan(x/2)] + 1/[1+tan(x/2)]} d[tan(x/2)] 注:1/(1-a^2) = 1/2*[1/(1-a) + 1/(1+a)]
=2πa + 1/4 * ln[1+tan(x/2)]/[1-tan(x/2)] |0~2π
=2πa + 1/4*(ln1 - ln1)
=2πa
=∫(1/cosx)dx + a*(2π - 0)
=2πa + ∫{1+[tan(x/2)]^2}/{1-[tan(x/2)]^2} dx 注:cosx = {1-[tan(x/2)]^2}/{1+[tan(2/x)]^2}
=2πa + 1/2*∫[sec(2/x)]^2 d(x/2)/{1-[tan(x/2)]^2} 注:(secα)^2 = 1 + (tanα)^2
=2πa + 1/2*∫d[tan(x/2)]/{1-[tan(x/2)]^2} 注:(tanα)' =(secα)^2
=2πa + 1/2*1/2*∫{1/[1-tan(x/2)] + 1/[1+tan(x/2)]} d[tan(x/2)] 注:1/(1-a^2) = 1/2*[1/(1-a) + 1/(1+a)]
=2πa + 1/4 * ln[1+tan(x/2)]/[1-tan(x/2)] |0~2π
=2πa + 1/4*(ln1 - ln1)
=2πa
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询