1、证明:x² +y² +z² =2xyz无非零整数解

no_shana
2013-10-23
知道答主
回答量:12
采纳率:0%
帮助的人:5.9万
展开全部
若x,y,z有为零的数时,易知2xyz=0,所以x=y=z=0.当x,y,z都为不为0整数时,原式必有2xy+z*z小于等于2xyz,写出式子移向可得z*z小于等于2xy(1-z),此时可知z必小于等于1,z等于一原式不成立,同理可得x和y也必小于一,当xyz为0已证,当xyz都为负整数时,显然2xyz小于0,原式不成立。综上,证毕。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式