4个回答
展开全部
答:考察分数的裂项
1/(1×3)+1/(2×4)+1/(3×5)+....+1/[n(n+2)]
=(1/2)[1-1/3+1/2-1/4+1/3-1/5+....+1/n-1/(n+2)]
=(1/2)[1+1/2-1/(n+1)-1/(n+2)]
=3/4-(2n+3)/[2(n+1)(n+2)]
1/(1×3)+1/(2×4)+1/(3×5)+....+1/[n(n+2)]
=(1/2)[1-1/3+1/2-1/4+1/3-1/5+....+1/n-1/(n+2)]
=(1/2)[1+1/2-1/(n+1)-1/(n+2)]
=3/4-(2n+3)/[2(n+1)(n+2)]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1/1x3+1/2x4+1/3x5+1/4x6+……+1/n(n+2)
=(1-1/3+1/2-1/4+1/3-1/5+1/4-1/6+……+1/n-1/n+2)÷2
=(1+1/2-1/n+1-1/n+2)÷2
= (3n²+7n+3)/4(n+1)(n+2)
=(1-1/3+1/2-1/4+1/3-1/5+1/4-1/6+……+1/n-1/n+2)÷2
=(1+1/2-1/n+1-1/n+2)÷2
= (3n²+7n+3)/4(n+1)(n+2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1/n(n+2)=1/2*(1/n-1/(n+2))
原式=1/2(1-1/3+1/2-1/4+1/3-1/5+1/4-1/6+...+1/n-1/n+2)=3/4-(2n+3)/2(n+2)(n+1)
原式=1/2(1-1/3+1/2-1/4+1/3-1/5+1/4-1/6+...+1/n-1/n+2)=3/4-(2n+3)/2(n+2)(n+1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询