2个回答
2013-10-25
展开全部
解析函数f(z)沿一条正向简单闭曲线的积分值 。严格定义是:f(z)在 0<|z-a| ≤R上解析,即a是f(z)的孤立奇点,则称积分值(1/2πi)∫|z-a|=Rf(z)dz为f(z)关于a点的留数 ,记作Res[f(z),a] 。如果f(z)是平面流速场的复速度,而a是它的旋源点(即旋涡中心或源汇中心),则积分∫|z-a|=Rf(z)dz表示旋源的强度——环流量,所以留数是环流量除以2πi的值。由于解析函数在孤立奇点附近可以展成罗朗级数:f(z)=∑ak(z-a)k ,将它沿|z-a|=R逐项积分,立即可见Res[f(z),a]=a-1 ,这表明留数是解析函数在孤立奇点的罗朗展式中负一次幂项的系数。
关于在扩充复平面上仅有有限多个孤立奇点的解析函数有两条与留数有关的重要性质:①该解析函数沿某一条不过孤立奇点的简单闭曲线积分等于其在曲线内部全部孤立奇点的留数之总和乘以2πi。②该解析函数关于全部孤立奇点的留数之总和为零。这两条性质正好与环流量的可叠加性及质量守恒定律相一致。
利用留数的性质以及它与积分的关系,我们可以通过将积分运算转化为留数的计算.
关于在扩充复平面上仅有有限多个孤立奇点的解析函数有两条与留数有关的重要性质:①该解析函数沿某一条不过孤立奇点的简单闭曲线积分等于其在曲线内部全部孤立奇点的留数之总和乘以2πi。②该解析函数关于全部孤立奇点的留数之总和为零。这两条性质正好与环流量的可叠加性及质量守恒定律相一致。
利用留数的性质以及它与积分的关系,我们可以通过将积分运算转化为留数的计算.
2013-10-25
展开全部
在复分析中,留数定理是用来计算解析函数沿着闭曲线的路径积分的一个有力的工具,也可以用来计算实函数的积分。它是柯西积分定理和柯西积分公式的推广。留数可以求某些广义积分,环积分,很方便的参考: http://zh.wikipedia.org/wiki/%E7%95%99%E6%95%B0%E5%AE%9A%E7%90%86
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询