怎么证明:可导必连续,连续不一定可导
可导一定连续,连续不一定可导:
证明:
设y=f(x)在x0处可导,f'(x0)=A
由可导的充分必要条件有
f(x)=f(x0)+A(x-x0)+o(│x-x0│)
当x→x0时,f(x)=f(x0)+o(│x-x0│)
再由定理:当x→x0时,f(x)→A的充分必要条件是f(x)=A+a(a是x→x0时的无穷小)得,limf(x)=f(x0)。
导数存在和导数连续的区别:
一、满足条件不同
1、导数存在:只要存在左导数或者右导数就叫导数存在。
2、可导:左导数和右导数存在并且左导数和右导数相等才能叫可导。
二、函数连续性不同
1、导数存在:导数存在的函数不一定连续。
2、可导:可导的函数一定连续;连续的函数不一定可导,不连续的函数一定不可导。
三、曲线形状不同
1、导数存在:曲线是不连续的,存在尖点或断点。
2、可导:可导的曲线形状是光滑的,连续的。没有尖点、断点。
证明:
设y=f(x)在x0处可导,f'(x0)=A
由可导的充分必要条件有
f(x)=f(x0)+A(x-x0)+o(│x-x0│)
当x→x0时,f(x)=f(x0)+o(│x-x0│)
再由定理:当x→x0时,f(x)→A的充分必要条件是f(x)=A+a(a是x→x0时的无穷小)得,limf(x)=f(x0)。
扩展资料:
导数与函数的性质
单调性
(1)若导数大于零,则单调递增;若导数小于零,则单调递减;导数等于零为函数驻点,不一定为极值点。需代入驻点左右两边的数值求导数正负判断单调性。
(2)若已知函数为递增函数,则导数大于等于零;若已知函数为递减函数,则导数小于等于零。
根据微积分基本定理,对于可导的函数,有:
如果函数的导函数在某一区间内恒大于零(或恒小于零),那么函数在这一区间内单调递增(或单调递减),这种区间也称为函数的单调区间。导函数等于零的点称为函数的驻点,在这类点上函数可能会取得极大值或极小值(即极值可疑点)。
进一步判断则需要知道导函数在附近的符号。对于满足的一点,如果存在使得在之前区间上都大于等于零,而在之后区间上都小于等于零,那么是一个极大值点,反之则为极小值点。
x变化时函数(蓝色曲线)的切线变化。函数的导数值就是切线的斜率,绿色代表其值为正,红色代表其值为负,黑色代表值为零。
可导一定连续,连续不一定可导。
证明:
设y=f(x)在x0处可导,f'(x0)=A
由可导的充分必要条件有
f(x)=f(x0)+A(x-x0)+o(│x-x0│)
当x→x0时,f(x)=f(x0)+o(│x-x0│)
再由定理:当x→x0时,f(x)→A的充分必要条件是f(x)=A+a(a是x→x0时的无穷小)得,limf(x)=f(x0)。
扩展资料
不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。
对于可导的函数f(x),x↦f'(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。
反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。
2013-10-26
lim[f(x)-f(x0)](x->x0)=lim{[f(x)-f(x0)]/(x-x0)}*(x-x0)=lim{[f(x)-f(x0)]/(x-x0)}*lim(x-x0)=f'(x0)*0=0
所以说f(x)在x0处连续
(2)举f(x)=|x|例子即可
2013-10-26
广告 您可能关注的内容 |