2个回答
展开全部
平面直角坐标系是法国数学家笛卡尔发明的.
在笛卡尔之前,几何与代数是数学中两个不同的研究领域.笛卡尔站在方法论的自然哲学的高度,认为希腊人的几何学过于依赖于图形,束缚了人的想象力.对于当时流行的代数学,他觉得它完全从属于法则和公式,不能成为一门改进智力的科学.因此他提出必须把几何与代数的优点结合起来,建立一种“真正的数学”.
笛卡尔的思想核心是:把几何学的问题归结成代数形式的问题,用代数学的方法进行计算、证明,从而达到最终解决几何问题的目的.依照这种思想他创立了我们”现在“称之为的“解析几何学”.
1637年,笛卡尔发表了《几何学》,创立了平面直角坐标系.他用平面上的一点到两条固定直线的距离来确定点的位置,用坐标来描述空间上的点.他进而又创立了解析几何学,表明了几何问题不仅可以归结成为代数形式,而且可以通过代数变换来实现发现几何性质,证明几何性质.
解析几何的出现,改变了自古希腊以来代数和几何分离的趋向,把相互对立着的“数” 与“形”统一了起来,使几何曲线与代数方程相结合.笛卡尔的这一天才创见,更为微积分的创立奠定了基础,从而开拓了变量数学的广阔领域.最为可贵的是,笛卡尔用运动的观点,把曲线看成点的运动的轨迹,不仅建立了点与实数的对应关系,而且把形(包括点、线、面)和“数”两个对立的对象统一起来,建立了曲线和方程的对应关系.这种对应关系的建立,不仅标志着函数概念的萌芽,而且标明变数进入了数学,使数学在思想方法上发生了伟大的转折--由常量数学进入变量数学的时期.
在笛卡尔之前,几何与代数是数学中两个不同的研究领域.笛卡尔站在方法论的自然哲学的高度,认为希腊人的几何学过于依赖于图形,束缚了人的想象力.对于当时流行的代数学,他觉得它完全从属于法则和公式,不能成为一门改进智力的科学.因此他提出必须把几何与代数的优点结合起来,建立一种“真正的数学”.
笛卡尔的思想核心是:把几何学的问题归结成代数形式的问题,用代数学的方法进行计算、证明,从而达到最终解决几何问题的目的.依照这种思想他创立了我们”现在“称之为的“解析几何学”.
1637年,笛卡尔发表了《几何学》,创立了平面直角坐标系.他用平面上的一点到两条固定直线的距离来确定点的位置,用坐标来描述空间上的点.他进而又创立了解析几何学,表明了几何问题不仅可以归结成为代数形式,而且可以通过代数变换来实现发现几何性质,证明几何性质.
解析几何的出现,改变了自古希腊以来代数和几何分离的趋向,把相互对立着的“数” 与“形”统一了起来,使几何曲线与代数方程相结合.笛卡尔的这一天才创见,更为微积分的创立奠定了基础,从而开拓了变量数学的广阔领域.最为可贵的是,笛卡尔用运动的观点,把曲线看成点的运动的轨迹,不仅建立了点与实数的对应关系,而且把形(包括点、线、面)和“数”两个对立的对象统一起来,建立了曲线和方程的对应关系.这种对应关系的建立,不仅标志着函数概念的萌芽,而且标明变数进入了数学,使数学在思想方法上发生了伟大的转折--由常量数学进入变量数学的时期.
长荣科机电
2024-10-27 广告
2024-10-27 广告
直角坐标机器人,作为深圳市长荣科机电设备有限公司的明星产品之一,以其高精度、高稳定性在自动化生产线上发挥着关键作用。该机器人采用直线电机或精密导轨驱动,能在电商平台Y、Z三个直角坐标轴上实现精准定位与运动控制,广泛应用于电子装配、包装、检测...
点击进入详情页
本回答由长荣科机电提供
展开全部
有一天,笛卡尔生病卧床,但他头脑一直没有休息,在反复思考一个问题:几何图形是直观的,而代数方程则比较抽象,能不能用几何图形来表示方程呢?这里,关键是如何把组成几何的图形的点和满足方程的每一组“数”挂上钩。他就拼命琢磨。通过什么样的办法、才能把“点”和“数”联系起来。突然,他看见屋顶角上的一只蜘蛛,拉着丝垂了下来,一会儿,蜘蛛又顺着丝爬上去,在上边左右拉丝。蜘蛛的“表演”,使笛卡尔思路豁然开朗。他想,可以把蜘蛛看做一个点,它在屋子里可以上、下、左、右运动,能不能把蜘蛛的每个位置用一组数确定下来呢?他又想,屋子里相邻的两面墙与地面交出了三条直线,如果把地面上的墙角作为起点,把交出来的三条线作为三根数轴,那么空间中任意一点的位置,不是都可以用这三根数轴上找到的有顺序的三个数来表示吗?反过来,任意给一组三个有顺序的数,例如3、2、1,也可以用空间中的一个点 P来表示它们。同样,用一组数(a, b)可以表示平面上的一个点,平面上的一个点也可以用一组二个有顺序的数来表示。于是在蜘蛛的启示下,笛卡尔创建了直角坐标系。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询