已知A(1,1),而且F1是椭圆x2/9+y2/5=1的左焦点,P是椭圆上任意一点,求|PF1|+|PA|的最小值和最大值
1个回答
2013-10-28
展开全部
椭圆:x�0�5/9+y�0�5/5=1
a^2=9,c^2=9-5=4
F2(2,0)
△PAF2中,|PA|-|PF2|≤|AF2|=√2
又|PF1|+|PF2|=2a=6
∴|PA|+|PF1| = |PA|+(6-|PF2|)= 6+(|PA|-|PF2| ≤ 6+√2
即:P在AF2延长线上时,|PA|+|PF1|的最大值是6+√2
因为三角形两边之差小于第三边,所以(|PF2| - |PA|) <= |AF2|(等号成立当且仅当P,A,F2在同一直线上)
所以|PA| + |PF1| = 2a - (|PF2| - |PA|) >= 2a - |AF2|
= 2*3 - 根号2
= 6-根号2
即|PA|+|PF1|的最小值为6-√2
a^2=9,c^2=9-5=4
F2(2,0)
△PAF2中,|PA|-|PF2|≤|AF2|=√2
又|PF1|+|PF2|=2a=6
∴|PA|+|PF1| = |PA|+(6-|PF2|)= 6+(|PA|-|PF2| ≤ 6+√2
即:P在AF2延长线上时,|PA|+|PF1|的最大值是6+√2
因为三角形两边之差小于第三边,所以(|PF2| - |PA|) <= |AF2|(等号成立当且仅当P,A,F2在同一直线上)
所以|PA| + |PF1| = 2a - (|PF2| - |PA|) >= 2a - |AF2|
= 2*3 - 根号2
= 6-根号2
即|PA|+|PF1|的最小值为6-√2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询