y=lg|x|的单调减区间为
展开全部
f(x)=lg|x|定义域为|x|>0,解得x≠0
∵f(-x)=lg|-x|=lg|x|,即f(x)=f(-x),
∴函数f(x)=lg|x|是偶函数。
取任意x1、x2∈(0,+∞),且x1<x2,
f(x1)-f(x2)=lg|x1|-lg|x2|=lgx1-lgx2=lg(x1/x2)
∵x1、x2∈(0,+∞),且x1<x2,
∴0<x1/x2<1,此时lg(x1/x2)<0,
∴f(x1)-f(x2)<0,即f(x1)<f(x2)
∴f(x)=lg|x|在(0,+∞)上单调递增。
又∵f(x)=lg|x|是偶函数,
故f(x)=lg|x|在(-∞,0)上单调递减。
∵f(-x)=lg|-x|=lg|x|,即f(x)=f(-x),
∴函数f(x)=lg|x|是偶函数。
取任意x1、x2∈(0,+∞),且x1<x2,
f(x1)-f(x2)=lg|x1|-lg|x2|=lgx1-lgx2=lg(x1/x2)
∵x1、x2∈(0,+∞),且x1<x2,
∴0<x1/x2<1,此时lg(x1/x2)<0,
∴f(x1)-f(x2)<0,即f(x1)<f(x2)
∴f(x)=lg|x|在(0,+∞)上单调递增。
又∵f(x)=lg|x|是偶函数,
故f(x)=lg|x|在(-∞,0)上单调递减。
追问
为什么
追答
…………什么为什么……
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询