关于二重积分的轮换对称性问题
不是谈二重积分的对称行,是对称性中的轮换对称性。二重积分轮换对称性有什么条件?有人说只要f(x,y)关于x=y对称就行,有人说是积分区域关于x=y对称,还有说两点都要满足...
不是谈二重积分的对称行,是对称性中的轮换对称性。
二重积分轮换对称性有什么条件?
有人说只要f(x,y)关于x=y对称就行,有人说是积分区域关于x=y对称,还有说两点都要满足。我被弄糊涂了,我现在只知道一般如果轮换后区域不对称的话,即使可以轮换对成意义也不大,因为没办法叠加了。
还有,什么叫区域关于x=y对称? 展开
二重积分轮换对称性有什么条件?
有人说只要f(x,y)关于x=y对称就行,有人说是积分区域关于x=y对称,还有说两点都要满足。我被弄糊涂了,我现在只知道一般如果轮换后区域不对称的话,即使可以轮换对成意义也不大,因为没办法叠加了。
还有,什么叫区域关于x=y对称? 展开
迈杰
2024-11-30 广告
2024-11-30 广告
免疫组化(IHC)是迈杰转化医学研究(苏州)有限公司常用的技术之一,全称为免疫组织化学技术。它基于抗原与抗体特异性结合的原理,通过化学反应使标记抗体的显色剂(如荧光素、酶等)显色,从而确定组织细胞内抗原(多肽和蛋白质)的位置、性质和相对含量...
点击进入详情页
本回答由迈杰提供
展开全部
你说的那几种情况都不是轮换对称性,首先所谓轮换对称性就是,如果把f(x,y)中的x换成y,y换成x后,f(x,y)的形式没有变化,就说f(x,y)具有轮换对称性。例如x^2+y^2有轮换对称性,而2x+3y没有轮换对称性(因为换完后是2y+3x,和原来的不一样)。下面说明轮换对称性在二重积分中的应用,我们知道二重积分的积分区域的边界可以用方程f(x,y)=0表示,如果这里的f(x,y)具有轮换对称性,那么被积函数中的x和y互换后积分结果不变。例如∫∫x^2dxdy,积分区域为圆周x^2+y^2=1,由于轮换对称性可知∫∫x^2dxdy=∫∫y^2dxdy(这就是把被积函数中的x换成了y),因此积分=(1/2)∫∫2x^2dxdy=(1/2)∫∫(x^2+y^2)dxdy,再用极坐标计算就简单多了。有不明白的地方欢迎追问。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询