2013-10-28
俄罗斯火箭发动机。
一般飞机的涡扇发动机
如上两图,火箭发动机和飞机发动机是有很大区别的。
简单的讲,由于火箭自身是携带燃料和助燃剂的,所以,火箭发动机不需要考虑进气问题,如图中火箭发动机样片一样,一般火箭发动机的喷嘴是很大的,占了大半个发动机。由于其不需要进气和加压装置,所以机构较为简单。高压泵将燃料和助燃剂同时压如燃烧室进行混合燃烧,形成高温高压气体通过喷嘴向外喷射高温高压气流,利用冲量原理产生推力。火箭发动机的喷气速度相当高,一般是几倍甚至十几倍音速,所以在高温高压下,发动机寿命是很短的。当然,火箭发动机也不需要太长的工作时间。
现如今的飞机发动机,大部分都是涡轮风扇发动机。由于飞机自身只携带燃料,并不携带助燃剂(一般是氧气),所以,他就像一般的内燃机一样,必须解决进气问题,最早的螺旋桨发动机和现在内燃机差不多,由内燃机驱动螺旋桨,但是由于螺旋桨驱动原理在速度提高后效率直线下降,无法满足高速飞行的,普通的内燃机也无法提供更大的功率,所以,要满足大功率前提就是,解决进气量,进气量越大,可燃烧的燃料就越多,功率就越大。然而,要增加进气量,要么增加进气体积,要么增加进气压力,而飞机发动机对体积和重量的限制,决定了,只能通过提高进气压力来满足进气量。因此,涡轮发动机诞生了,而他利用燃烧后的高温高压气体驱动涡轮,涡轮在带通发动机前面的压气机,将进气压力大大提高,获得更多的进气量,然而单纯的涡轮喷气发动机在亚音速下效率低下,而螺旋桨发动机不适合高速飞行,所以为了解决这一问题,涡轮风扇发动机诞生了,他是涡轮发动机与传统的螺旋桨发动机的一种完美的综合体。如第二幅图,图中最红色的腔体为燃烧室,燃烧室产生的高温高压气体向后喷出,驱动后面的涡轮,涡轮带动同轴的前端风扇和压气机工作将空气源源不断的压入燃烧室,再与燃料混合燃烧。而整个发动机是由两层组成的,如图,发动机后半部分明显是内外两层,内部的整个涡轮及燃烧系统成为内涵道,而外面一层成为外涵道,这就是涡轮风扇发动机与涡轮喷气发动机最大的区别。最前端风扇将空气加压,一部分流进压气机然后通过燃烧室燃烧驱动涡轮,另一部分空气通过外涵道最后从喷口与内涵到高温期混合喷出。外涵道与内涵道通过空气量的比称为涵道比,一般情况下,涵道比越大,发动机的低速性能与效率越高,涵道比越小,发动机的高速性能越好,涵道比为零(也就是没有外涵道)的发动机,其实就是涡轮喷气发动机。
而涵道比大的发动机一般用在民航飞机上,因为效率高,低速效果好,一般涵道比都在1.5以上。而涵道比小的发动机一般用在战斗机上,因为高速性能好,一般涵道比在0.3左右。而有些飞机为了追求速递,直接用涡轮喷气发动机,也就是没有外涵道。
因此,火箭发动机与飞机发动机最大的区别也就是质的区别就是进气部分。火箭不需要复杂的进气机构,而飞机发动机的几乎大部分设计都是为了解决进气问题。相对来说,飞机发动机就复杂的多。这也是为什么中国能造火箭发动机而造不了飞机发动机。
飞机的发动机和火箭发动机是有很大的不同
最大的区别就是火箭发动机自带氧化剂,自给自足,天上水下,飞到哪里都可以。
飞机发动机要依靠大气中的氧气,没了就空气就不行。
火箭发动机只有一个喷口,点着了就可劲喷,再大的火箭,几十上百吨的燃料,几十秒就烧完了
飞机发动机就一两头开的管子,前面进气,后面出气,可以飞几个小时
飞机发动机一般现在基本为涡扇(涡扇喷射)和涡喷 但涡喷(涡轮喷射)也基本被淘汰了
推重比(T/W),TIT,TPR,BPR
第一代涡轮喷射引擎的特征(用于Mig-17,Mig-19):TIT ~ 1150K,TPR = 4~6。
第二代涡轮喷射引擎的特征(用于Mig-21):TIT = 1200~1250K,TPR = 8~10。
第三代涡轮喷射引擎的特征(用于Mig-23):TIT = 1400~1450K,TPR = 13~15,T/W = 5.5~6.5。
第四代涡扇喷射引擎的特征(用于F-16或Su-27):TIT = 1600~1700K,TPR =20~25,BPR ~ 0.6,T/W ~8。
而火箭是火箭式发动机
火箭发动机也是喷气式发动机的一种
液体火箭通过泵将氧化剂和燃料分别泵入燃烧室,两种推进剂成分在燃烧室混合并燃烧。而固体火箭的推进剂事先混合好放入储存室,工作时储存室就是燃烧室。固液混合火箭使用固体和液体混合的推进剂或气体推进剂,也有使用高能电源将惰性反应物料送入热交换机加热,这就不需要燃烧室。
火箭推进剂在燃烧并排出产生推力前通常储存在推进剂箱中。推进剂一般选用化学推进剂,在经历放热化学反应后产生高温气体用于火箭推进。
这和飞机发动机有很大的区别
望采纳!!
2013-10-28