已知三角形的三边为a、b、c,设p=1/2(a+b+c),求证三角形的面积S=√p(p-a)(p-b)(p-c)

 我来答
匿名用户
2013-11-08
展开全部
证明:若ΔABC的三边长为a、b、c,则
SΔABC=√((a+b+c)×(-a+b+c)×(a-b+c)×(a+b-c))/4(这是海伦公式的变形,“负号“-”从a左则向右经过a、b、c”,负号从x轴负轴向正轴扫描一个周期!我觉得这么记更简单,还设个什么l=(a+b=c)/2啊,多此一举!)
证明:设边c上的高为 h,则有
√(a^2-h^2)+√(b^2-h^2)=c
√(a^2-h^2)=c-√(b^2-h^2)
两边平方,化简得:
2c√(b^2-h^2)=b^2+c^2-a^2
两边平方,化简得:
h=√(b^2-(b^2+c^2-a^2)^2/(4c^2))
SΔABC=ch/2
=c√(b^2-(b^2+c^2-a^2)^2/(4c^2))/2
仔细化简一下,得:
SΔABC=√((a+b+c)×(-a+b+c)×(a-b+c)×(a+b-c))/4

用三角函数证明!
证明:
SΔABC=absinC/2
=ab√(1-(cosC)^2)/2————(1)
∵cosC=(a^2+b^2-c^2)/(2ab)
∴代入(1)式,(仔细)化简得:
SΔABC=√((a+b+c)×(-a+b+c)×(a-b+c)×(a+b-c))/4
这是著名的海伦公式!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2013-11-08
展开全部
证明:海伦公式:若ΔABC的三边长为a、b、c,则
SΔABC=√((a+b+c)×(-a+b+c)×(a-b+c)×(a+b-c))/4(这是海伦公式的变形,“负号“-”从a左则向右经过a、b、c”,负号从x轴负轴向正轴扫描一个周期!我觉得这么记更简单,还设个什么l=(a+b=c)/2啊,多此一举!)
证明:设边c上的高为 h,则有
√(a^2-h^2)+√(b^2-h^2)=c
√(a^2-h^2)=c-√(b^2-h^2)
两边平方,化简得:
2c√(b^2-h^2)=b^2+c^2-a^2
两边平方,化简得:
h=√(b^2-(b^2+c^2-a^2)^2/(4c^2))
SΔABC=ch/2
=c√(b^2-(b^2+c^2-a^2)^2/(4c^2))/2
仔细化简一下,得:
SΔABC=√((a+b+c)×(-a+b+c)×(a-b+c)×(a+b-c))/4

设三角形的三边a、b、c的对角分别为A、B、C,则余弦定理为
cosC = (a^2+b^2-c^2)/2ab

S=1/2*ab*sinC
=1/2*ab*√(1-cos^2 C)
=1/2*ab*√[1-(a^2+b^2-c^2)^2/4a^2*b^2]
=1/4*√[4a^2*b^2-(a^2+b^2-c^2)^2]
=1/4*√[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)]
=1/4*√[(a+b)^2-c^2][c^2-(a-b)^2]
=1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)]

设p=(a+b+c)/2
则p=(a+b+c)/2, p-a=(-a+b+c)/2, p-b=(a-b+c)/2,p-c=(a+b-c)/2,

上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16]
=√[p(p-a)(p-b)(p-c)]
所以,三角形ABC面积S=√[p(p-a)(p-b)(p-c)]
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式