已知:如图△ABC中、AB=AC,∠C=30°,AB⊥AD,AD=4cm,求BC的长
展开全部
分析:等腰△ABC中,根据∠B=∠C=30°,∠BAD=90°;易证得∠DAC=∠C=30°,即CD=AD=4cm.Rt△ABD中,根据30°角所对直角边等于斜边的一半,可求得BD=2AD=8cm;由此可求得BC的长.
解答:
解:∵AB=AC
∴∠B=∠C=30°
∵AB⊥AD
∴BD=2AD=2×4=8(cm)
∠B+∠ADB=90°,
∴∠ADB=60°
∵∠ADB=∠DAC+∠C=60°
∴∠DAC=30°
∴∠DAC=∠C
∴DC=AD=4cm
∴BC=BD+DC=8+4=12(cm).
解答:
解:∵AB=AC
∴∠B=∠C=30°
∵AB⊥AD
∴BD=2AD=2×4=8(cm)
∠B+∠ADB=90°,
∴∠ADB=60°
∵∠ADB=∠DAC+∠C=60°
∴∠DAC=30°
∴∠DAC=∠C
∴DC=AD=4cm
∴BC=BD+DC=8+4=12(cm).
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
把你丁丁巴拉硬,量一下,差不多那么长
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询