在△ABC中,角A,B,C对应边分别是a,b,c,c=2,sin2A+sin2B-sin2C=sinAsinB.(1)若sinC+sin(B-A)=2
在△ABC中,角A,B,C对应边分别是a,b,c,c=2,sin2A+sin2B-sin2C=sinAsinB.(1)若sinC+sin(B-A)=2sin2A,求△AB...
在△ABC中,角A,B,C对应边分别是a,b,c,c=2,sin2A+sin2B-sin2C=sinAsinB.(1)若sinC+sin(B-A)=2sin2A,求△ABC面积;(2)求AB边上的中线长的取值范围.
展开
1个回答
展开全部
(1)由sin2A+sin2B-sin2C=sinAsinB,利用正弦定理化简得:a2+b2-c2=ab,
∴cosC=
=
=
,即C=
,
∵sinC+sin(B-A)=sin(B+A)+sin(B-A)=2sin2A,
∴sinBcosA=2sinAcosA,
当cosA=0,即A=
,此时S△ABC=
;
当cosA≠0,得到sinB=2sinA,利用正弦定理得:b=2a,此时此时S△ABC=
;
(2)∵
=
,
∴|CD|2=
=
,
∵cosC=
∴cosC=
a2+b2?c2 |
2ab |
ab |
2ab |
1 |
2 |
π |
3 |
∵sinC+sin(B-A)=sin(B+A)+sin(B-A)=2sin2A,
∴sinBcosA=2sinAcosA,
当cosA=0,即A=
π |
2 |
2
| ||
3 |
当cosA≠0,得到sinB=2sinA,利用正弦定理得:b=2a,此时此时S△ABC=
2
| ||
3 |
(2)∵
CD |
| ||||
2 |
∴|CD|2=
a2+b2+2abcos
| ||
4 |
a2+b2+ab |
4 |
∵cosC=
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:
下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载