(2008?沈阳)已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线

(2008?沈阳)已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD... (2008?沈阳)已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形;(2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN. 展开
 我来答
想你的审
2014-11-16 · TA获得超过242个赞
知道答主
回答量:114
采纳率:0%
帮助的人:120万
展开全部
解答:(1)证明:锋此①∵∠BAC=∠DAE,∴∠BAE=∠CAD,
∵AB=AC,AD=AE,
∴△ABE≌△ACD,
∴BE=CD.
②由△ABE≌△ACD,得
∠ABE=∠ACD,BE=CD,
∵M、N分别是BE,CD的中点,
∴BM=CN.
又∵AB=AC,
∴△ABM≌△ACN.
∴AM=AN,档基派即△AMN为等腰三角形.

(2)解:(1)中的两个结论仍然成立.

(3)证明:在图②中正确画出线段行贺PD,
由(1)同理可证△ABM≌△ACN,
∴∠CAN=∠BAM∴∠BAC=∠MAN.
又∵∠BAC=∠DAE,
∴∠MAN=∠DAE=∠BAC.
∴△AMN,△ADE和△ABC都是顶角相等的等腰三角形.
∴△PBD和△AMN都为顶角相等的等腰三角形,
∴∠PBD=∠AMN,∠PDB=∠ANM,
∴△PBD∽△AMN.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式