已知函数f(x)=ax^2+bx-lnx,a,b∈R (1)当a=b=1时,求函数y=f(x)的

象在(1,f(1))处的切线方程(2)若a<0且b=2-a,试讨论f(x)的单调性(3)若对任意的b∈[-2,-1],均存在x∈(1,e)使得函数y=f(x)图象上的点落... 象在(1,f(1))处的切线方程
(2)若a<0且b=2-a,试讨论f(x)的单调性
(3)若对任意的b∈[-2,-1],均存在x∈(1,e)使得函数y=f(x)图象上的点落在{1<x<e y<0}所表示的平面区域内,求实数a的取值范围
展开
有时飘零WZ
2014-11-22 · 超过22用户采纳过TA的回答
知道答主
回答量:41
采纳率:0%
帮助的人:19.7万
展开全部
⑴当a=b=1时,f(x)=x^2+x-lnx,则f(1)=2,对函数求导,f(x)′=2x+1-1/x,则,f(1)′=2,则切线方程为y=2x.
⑵当a<0且b=2-a时,f(x)=ax^2+(2-a)x-lnx,对函数求导,f(x)′=2ax+2-a-1/x,令f(x)′=0
也就是2ax²+(2-a)x-1=0,得X=1/2或-1/a,则分为三种情况,①-2<a<0,画出导函数的图像,得f(x)在(0,1/2)、(-1/a,∞)单调递减(因为导函数的值是小于携搏核零的),在[1/2,-1/a]单调递增。②当a=0,画出导函数的图像,得f(x)在(0,∞)单调递减。③a<-2,画出导函数的图像,得f(x)在(0,-1/a)、(1/2,∞)单调递减,在[-1/a,1/2-1/a]单调递增。
⑶对任意的b∈[-2,-1],均存在x∈(1,e)使得函数y=f(x)图象上的点落在{1<x<e y<0}所表示的平面区域内,说明对于任意b∈[-2,-1]时,不存在x∈(1,e),使得f(x)<0成立为假命题,即f(x)≥0恒成立为假命题,当f(x)≥辩掘0恒成立时,f(x)的银指最小值≥0,
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式