已知{an}为公差不为0的等差数列,a1=3,且a1、a4、a13成等比数列.(Ⅰ)求数列{an}的通项公式;(Ⅱ)若
已知{an}为公差不为0的等差数列,a1=3,且a1、a4、a13成等比数列.(Ⅰ)求数列{an}的通项公式;(Ⅱ)若bn=2nan,求数列{bn}的前n项和....
已知{an}为公差不为0的等差数列,a1=3,且a1、a4、a13成等比数列.(Ⅰ)求数列{an}的通项公式;(Ⅱ)若bn=2nan,求数列{bn}的前n项和.
展开
1个回答
展开全部
(Ⅰ)设{an}的公差为d,由题意得(3+3d)2=3(3+12d),得d=2或d=0(舍),…(2分)
所以{an}的通项公式为an=3+(n-1)?2=2n+1…(4分)
(Ⅱ)bn=2nan=(2n+1)2nSn=3?21+5?22+7?23+…+(2n+1)?2n…①
…2Sn=3?22+5?23+7?24+…+(2n+1)?2n+1②…(6分)
①-②得?Sn=3?21+2?22+2?23+…+2?2n?(2n+1)?2n+1…(8分)
…(10分)
∴Sn=(2n?1)?2n+1+2…(12分)
所以{an}的通项公式为an=3+(n-1)?2=2n+1…(4分)
(Ⅱ)bn=2nan=(2n+1)2nSn=3?21+5?22+7?23+…+(2n+1)?2n…①
…2Sn=3?22+5?23+7?24+…+(2n+1)?2n+1②…(6分)
①-②得?Sn=3?21+2?22+2?23+…+2?2n?(2n+1)?2n+1…(8分)
|
∴Sn=(2n?1)?2n+1+2…(12分)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询