证明1/n^2级数的收敛性

 我来答
教育小百科达人
2021-08-17 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:468万
展开全部

具体回答如下:


柯西准则:

级数的收敛问题是级数理论的基本问题。从级数的收敛概念可知,级数的敛散性是借助于其部分和数列Sm的敛散性来定义的。

因此可从数列收敛的柯西准则得出级数收敛的柯西准则 :∑un收敛<=>任意给定正数ε,必有自然数N,当n>N,对一切自然数 p,有|u[n+1]+u[n+2]+…+u[n+p]|<ε,即充分靠后的任意一段和的绝对值可任意小。

庄之云7S
2017-09-25 · TA获得超过2318个赞
知道小有建树答主
回答量:1896
采纳率:46%
帮助的人:135万
展开全部
这个题要用Dirichlet判别法证明。
取un(x)=(-1)^(n-1), vn(x)=1/(n+x^2)。 则 |求和{k=1,n}uk(x)|<=1在整个实数轴上一致有界;vn(x)对任意实数单调递减,在整个实数轴上一致收敛于0.根据Dirichlet判别法
求和{n=1,无穷大}un(x)*vn(x)=求和{n=1,无穷大}((-1)^(n-1))/(n+x^2)在实数轴上一致收敛。
但是, 求和{n=1,无穷大}|un(x)*vn(x)|=求和{n=1,无穷大}1/(n+x^2)在实数轴上发散,
所以,求和{n=1,无穷大}un(x)*vn(x)=求和{n=1,无穷大}((-1)^(n-1))/(n+x^2)不是绝对收敛的。

当 x^2>0时,级数 求和{n=1,无穷大}x^2/(1+x^2)^n 是公比小于1的正项等比级数,绝对收敛。
设 S(x)=求和{n=1,无穷大}x^2/(1+x^2)^n=x^2*(求和{n=1,无穷大}1/(1+x^2)^n)
=x^2*[1/(1+x^2)/(1- 1/(1+x^2)]=1
而 S(0)=0.
即 和函数 S(x)在x=0不连续。因为一致收敛级数的和函数一定是连续的,所以这个级数不是一致收敛的。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
推荐于2017-09-25
展开全部

 

本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式