如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,PA⊥平面ABCD,点M、N分别为BC、PA的中点,且PA=AD=2,A

如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,PA⊥平面ABCD,点M、N分别为BC、PA的中点,且PA=AD=2,AB=1,AC=3.(Ⅰ)证明:CD⊥平面P... 如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,PA⊥平面ABCD,点M、N分别为BC、PA的中点,且PA=AD=2,AB=1,AC=3.(Ⅰ)证明:CD⊥平面PAC;(Ⅱ)在线段PD上是否存在一点E,使得NM∥平面ACE;若存在,求出PE的长;若不存在,说明理由. 展开
 我来答
玖挚兮4914
2014-11-06 · 超过67用户采纳过TA的回答
知道答主
回答量:131
采纳率:90%
帮助的人:54.4万
展开全部
证明:(Ⅰ)∵PA⊥平面ABCD,∴PA⊥CD
在△ACD中,AD=2,CD=1,AC=
3
,∴△ACD是直角三角形,且AC⊥CD
∴CD⊥平面PAC;
(II)存在点E,
取PD中点E,连接NE,EC,AE,
∵N,E分别为PA,PD中点,
NE
.
.
1
2
AD

又在菱形ABCD中,CM
.
.
1
2
AD

NE
.
.
MC
,即MCEN是平行四边形
∴NM∥EC,
又EC?平面ACE,NM?平面ACE
∴MN∥平面ACE,
即在PD上存在一点E,使得NM∥平面ACE,
此时 PE=
1
2
PD=
2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式