如图,在平面直角坐标系中,以坐标原点O为圆心,2为半径画⊙O,P是⊙O上一动点,且P在第一象限内,过点P

如图,在平面直角坐标系中,以坐标原点O为圆心,2为半径画⊙O,P是⊙O上一动点,且P在第一象限内,过点P作⊙O的切线与轴相交于点A,与轴相交于点B。(1)点P在运动时,线... 如图,在平面直角坐标系中,以坐标原点O为圆心,2为半径画⊙O,P是⊙O上一动点,且P在第一象限内,过点P作⊙O的切线与 轴相交于点A,与 轴相交于点B。(1)点P在运动时,线段AB的长度页在发生变化,请写出线段AB长度的最小值,并说明理由;(2)在⊙O上是否存在一点Q,使得以Q、O、A、P为顶点的四边形时平行四边形?若存在,请求出Q点的坐标;若不存在,请说明理由。 展开
 我来答
丄磳盽
推荐于2016-12-06 · 超过68用户采纳过TA的回答
知道答主
回答量:144
采纳率:100%
帮助的人:139万
展开全部
(1)线段AB长度的最小值为4
理由如下:
连接OP因为AB切⊙O于P,所以OP⊥AB
取AB的中点C,则               …………3分
时,OC最短,
即AB最短,此时                     …………4分
(2)设存在符合条件的点Q,
如图①,

设四边形APOQ为平行四边形,
因为四边形APOQ为矩形
又因为
所以四边形APOQ为正方形
所以
在Rt△OQA中,根据
得Q点坐标为( )。         …………7分
如图②,设四边形APQO为平行四边形

因为OQ∥PA,
所以
又因为
所以
因为 PQ∥OA,
所以 轴。
轴于点H,
在Rt△OHQ中,根据
得Q点坐标为(
所以符合条件的点Q的坐标为( )或( )。

(1)如图,设AB的中点为C,连接OP,由于AB是圆的切线,故△OPC是直角三角形,有OP<OC,所以当OC与OP重合时,OC最短;
(2)分两种情况:如图(1),当四边形APOQ是正方形时,△OPA,△OAQ都是等腰直角三角形,可求得点Q的坐标为( ,﹣ ),如图(2),可求得∠QOP=∠OPA=90°,由于OP=OQ,故△OPQ是等腰直角三角形,可求得点Q的坐标为(﹣ ).
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式