已知抛物线y1=ax2+bx+c(a≠0,a≠c)过点A(1,0),顶点为B,且抛物线不经过第三象限.(1)使用a、c表
已知抛物线y1=ax2+bx+c(a≠0,a≠c)过点A(1,0),顶点为B,且抛物线不经过第三象限.(1)使用a、c表示b;(2)判断点B所在象限,并说明理由;(3)若...
已知抛物线y1=ax2+bx+c(a≠0,a≠c)过点A(1,0),顶点为B,且抛物线不经过第三象限.(1)使用a、c表示b;(2)判断点B所在象限,并说明理由;(3)若直线y2=2x+m经过点B,且与该抛物线交于另一点C(ca,b+8),求当x≥1时y1的取值范围.
展开
1个回答
展开全部
解:(1)∵抛物线y1=ax2+bx+c(a≠0,a≠c),经过A(1,0),
把点代入函数即可得到:b=-a-c;
(2)B在第四象限.
理由如下:
∵抛物线y1=ax2+bx+c(a≠0,a≠c)过点A(1,0),
∵x1?x2=
,
∴x1=1,x2=
,a≠c,
所以抛物线与x轴有两个交点,
又∵抛物线不经过第三象限,
∴a>0,且顶点在第四象限;
(3)∵C(
,b+8),且在抛物线上,
当b+8=0时,解得b=-8,
∵a+c=-b,
∴a+c=8,
把B(-
,
)、C(
,b+8)两点代入直线解析式得:
,
解得:
或
把点代入函数即可得到:b=-a-c;
(2)B在第四象限.
理由如下:
∵抛物线y1=ax2+bx+c(a≠0,a≠c)过点A(1,0),
∵x1?x2=
c |
a |
∴x1=1,x2=
c |
a |
所以抛物线与x轴有两个交点,
又∵抛物线不经过第三象限,
∴a>0,且顶点在第四象限;
(3)∵C(
c |
a |
当b+8=0时,解得b=-8,
∵a+c=-b,
∴a+c=8,
把B(-
b |
2a |
4ac?b2 |
4a |
c |
a |
|
解得:
|
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
类别
我们会通过消息、邮箱等方式尽快将举报结果通知您。 说明 0/200 提交
取消
|