大学数学里的导数 和 微分 有什么区别 ?只限大学范围 不深入研究
3个回答
展开全部
是一样的,不过求积分时用微分形式表示更好理解一些
追问
能理解为 微分是一小段的变化率 导数是点变化率吗?
追答
抽象的东西只能自己理解,它们都是无限细分到一点的
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
导数和微分的不同点在于:
导数是函数在一点处的应变量与自变量它们相应增量的比值当自变量增量其趋于0时的极限.导数是一个极限值,是一个定值;而微分是函数在一点处的应变量与自变量它们相应增量之间当自变量增量较微小时的一个线性关系.微分是一种关系,不是定值。
在几何意义上,导数是曲线在一点的切线斜率,而微分则是在该点处,以该点为一顶点,以该点处切线为斜边、平行x轴以自变量增量为长度的一直角边,这样所作的直角三角形的另一个直角边的长度.即f'(x)=dy/dx
导数是函数在一点处的应变量与自变量它们相应增量的比值当自变量增量其趋于0时的极限.导数是一个极限值,是一个定值;而微分是函数在一点处的应变量与自变量它们相应增量之间当自变量增量较微小时的一个线性关系.微分是一种关系,不是定值。
在几何意义上,导数是曲线在一点的切线斜率,而微分则是在该点处,以该点为一顶点,以该点处切线为斜边、平行x轴以自变量增量为长度的一直角边,这样所作的直角三角形的另一个直角边的长度.即f'(x)=dy/dx
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |