什么是泰勒多项式
泰勒多项式即泰勒级数。
在数学中,泰勒级数(英语:Taylor series)用无限项连加式——级数来表示一个函数,这些相加的项由函数在某一点的导数求得。泰勒级数是以于1715年发表了泰勒公式的英国数学家布鲁克·泰勒(Sir Brook Taylor)的名字来命名的。通过函数在自变量零点的导数求得的泰勒级数又叫做迈克劳林级数,以苏格兰数学家科林·麦克劳林的名字命名。 泰勒级数在近似计算中有重要作用。
定义:如果 在点x=x0具有任意阶导数,则幂级数
称为 在点x0处的泰勒级数。
在泰勒公式中,取x0=0,得到的级数
称为麦克劳林级数。函数f(x)的麦克劳林级数是x的幂级数,那么这种展开是唯一的,且必然与f(x)的麦克劳林级数一致。
注意:如果f(x)的麦克劳林级数在点的某一邻域内收敛,它不一定收敛于f(x)。因此,如果f(x)在某处有各阶导数,则f(x)的麦克劳林级数虽然能算出来,但这个级数能否在某个区域内收敛,以及是否收敛于f(x)还需要进一步验证。
一些函数无法被展开为泰勒级数,因为那里存在一些奇点。但是如果变量x是负指数幂的话,仍然可以将其展开为一个级数。例如 f(x)=e^(-1/x^2) ,就可以被展开为一个洛朗级数。
多元泰勒公式
对于多元函数,也有类似的泰勒公式。设B(a,r) 是欧几里得空间RN中的开球,ƒ 是定义在B(a,r) 的闭包上的实值函数,并在每一点都存在所有的n+1 次偏导数。这时的泰勒公式为:
对所有
Taylor's Polynomials 泰勒多项式
http://dufu.math.ncu.edu.tw/calculus/calculus_bus/node81.html