已知数列{an}满足:a1=a,an+1=Sn+(?1)n,n∈N*,且{an+23(?1)n}是等比数列,则an的表达式为2n?1+2(?1)
已知数列{an}满足:a1=a,an+1=Sn+(?1)n,n∈N*,且{an+23(?1)n}是等比数列,则an的表达式为2n?1+2(?1)n?132n?1+2(?1...
已知数列{an}满足:a1=a,an+1=Sn+(?1)n,n∈N*,且{an+23(?1)n}是等比数列,则an的表达式为2n?1+2(?1)n?132n?1+2(?1)n?13.
展开
1个回答
展开全部
由an+1=Sn+(?1)n,可得a2=S1-1=a-1,a3=S2+1=2a,
由{an+
(?1)n}为等比数列得,(a2+
)2=(a1?
)(a3?
),即(a?
)2=(a?
)(2a?
),
解得a=1或a=
,当a=
时,{an+
(?1)n}的第二项为a-1+
=0不合题意,
则该等比数列的公比为2,首项为
.
所以an+
(?1)n=
×2n-1,
所以an=
?2n?1?
?(?1)n=
,
故答案为:
.
由{an+
2 |
3 |
2 |
3 |
2 |
3 |
2 |
3 |
1 |
3 |
2 |
3 |
2 |
3 |
解得a=1或a=
1 |
3 |
1 |
3 |
2 |
3 |
2 |
3 |
则该等比数列的公比为2,首项为
1 |
3 |
所以an+
2 |
3 |
1 |
3 |
所以an=
1 |
3 |
2 |
3 |
2n?1+2(?1)n?1 |
3 |
故答案为:
2n?1+2(?1)n?1 |
3 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询