已知函数f(x)=(ax-2)ex在x=1处取得极值.(1)求a的值;(2)求函数f(x)在[m,m+1]上的最小值

已知函数f(x)=(ax-2)ex在x=1处取得极值.(1)求a的值;(2)求函数f(x)在[m,m+1]上的最小值.... 已知函数f(x)=(ax-2)ex在x=1处取得极值.(1)求a的值;(2)求函数f(x)在[m,m+1]上的最小值. 展开
 我来答
蜗牛476
推荐于2017-09-30 · TA获得超过124个赞
知道答主
回答量:120
采纳率:0%
帮助的人:59.8万
展开全部
(1)f′(x)=aex+(ax-2)ex=(ax+a-2)ex
由已知得f'(1)=0即(2a-2)ex=0解得:a=1
当a=1时,在x=1处函数f(x)=(x-2)ex取得极小值,所以a=1.(4分)
(2)由f(x)=(x-2)ex
得f′(x)=ex+(x-2)ex=(x-1)ex
由f′(x)=0,得x=1,
列表讨论:
x(-∞,1)1(1,+∞)
f'(x)-0+
f(x)
所以函数f(x)在(-∞,1)递减,在(1,+∞)递增;
当m≥1时,f(x)在[m,m+1]单调递增,fmin(x)=f(m)=(m-2)em
当0<m<1时,m<1<m+1f(x)在[m,1]单调递减,
在[1,m+1]单调递增,fmin(x)=f(1)=-e.
当m≤0时,m+1≤1,f(x)在[m,m+1]单调递减,
fmin(x)=f(m+1)=(m?1)em+1
综上,f(x)在[m,m+1]上的最小值:
fmin(x)=
(m?2)emm≥1
?e,0<m<1
(m?1)em+1m≤0
.(4分)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式