[线代]线性代数几个小问题不明白
1,b1=b2-b3+b4这为什么就说明b1,b2,b3,b4线性相关?一个向量能由其他向量线性表示的话,应该是b1=-1/k1(k2a2+k3a3+.....)2,入1...
1, b1=b2-b3+b4 这为什么就说明b1,b2,b3,b4线性相关?一个向量能由其他向量线性表示的话,应该是b1=-1/k1 (k2a2+k3a3+.....)
2, 入1(a1+b1)+....+入m(am+bm)=0
其中a1=-b1=e1 a2=-b2=e2 ..... 则上式成立
得出a1,....am线性无关 b1,....bm线性无关 这是为什么??
3,a1T=(a 3 1) a2T=(2 b 3) a3T=(1 2 1) a4T=(2 3 1)
a1=xa3+ya4 a2=xa3+ya4 x,y 怎么得出??a,b怎么解??
4,书上说n<m,n个向量组一定线性相关,特别地,n+1个n维向量线性相关。
如果n+1=m呢??那还怎么成立? 展开
2, 入1(a1+b1)+....+入m(am+bm)=0
其中a1=-b1=e1 a2=-b2=e2 ..... 则上式成立
得出a1,....am线性无关 b1,....bm线性无关 这是为什么??
3,a1T=(a 3 1) a2T=(2 b 3) a3T=(1 2 1) a4T=(2 3 1)
a1=xa3+ya4 a2=xa3+ya4 x,y 怎么得出??a,b怎么解??
4,书上说n<m,n个向量组一定线性相关,特别地,n+1个n维向量线性相关。
如果n+1=m呢??那还怎么成立? 展开
5个回答
展开全部
1.b1=b2-b3+b4
b1-b2+b3-b4=0
因为存在不全为0的k1,k2,k3,k4使k1b1+k2b2+k3b3+k4b4=0
所以b1,b2,b3,b4线性相关.
一个向量能由其他向量线性表示的话,应该是b1=-1/k1 (k2a2+k3a3+.....)
变形为b1k1+b2k2+...+bnkn=0
(k1,k2..kn不全为0)
2.a1=-b1=e1 a2=-b2=e2 .....
w1e1+w2e2+..wnen=0
e1,e2,e..en是线性无关的向量组
所以w1=w2=...wn=0
a1,a2..an也是单位向量组,也是线性无关的呀!
-b1,-b2,..-bn也是单位向量组,也线性无关呀!
3.射影几何?
a1T=(a 3 1) a2T=(2 b 3) a3T=(1 2 1) a4T=(2 3 1)
a1=xa3+ya4 a2=xa3+ya4 x,y
(a,3,1)=x(1,2,1)+y(2,3,1)
(2,b,3)=x(1,2,1)+y(2,3,1)
所以三联比(a,3,1)=(2,b,3)
a/2=2/b=1/3
a=2/3
b=6
4.这个m是什么??
n+1个n维向量线性相关,
因为任何一个n维向量都可以由单位向量e1,e2,...en线性表出,
而n+1>n的,
根据定理有:
若一个向量组可以被一个向量组线性表出,且前一个的个数多于后一个,
那个前一个是线性相关的.
所以n+1维向量线性相关.
b1-b2+b3-b4=0
因为存在不全为0的k1,k2,k3,k4使k1b1+k2b2+k3b3+k4b4=0
所以b1,b2,b3,b4线性相关.
一个向量能由其他向量线性表示的话,应该是b1=-1/k1 (k2a2+k3a3+.....)
变形为b1k1+b2k2+...+bnkn=0
(k1,k2..kn不全为0)
2.a1=-b1=e1 a2=-b2=e2 .....
w1e1+w2e2+..wnen=0
e1,e2,e..en是线性无关的向量组
所以w1=w2=...wn=0
a1,a2..an也是单位向量组,也是线性无关的呀!
-b1,-b2,..-bn也是单位向量组,也线性无关呀!
3.射影几何?
a1T=(a 3 1) a2T=(2 b 3) a3T=(1 2 1) a4T=(2 3 1)
a1=xa3+ya4 a2=xa3+ya4 x,y
(a,3,1)=x(1,2,1)+y(2,3,1)
(2,b,3)=x(1,2,1)+y(2,3,1)
所以三联比(a,3,1)=(2,b,3)
a/2=2/b=1/3
a=2/3
b=6
4.这个m是什么??
n+1个n维向量线性相关,
因为任何一个n维向量都可以由单位向量e1,e2,...en线性表出,
而n+1>n的,
根据定理有:
若一个向量组可以被一个向量组线性表出,且前一个的个数多于后一个,
那个前一个是线性相关的.
所以n+1维向量线性相关.
展开全部
1.b1=b2-b3+b4
b1-b2+b3-b4=0
因为存在不全为0的k1,k2,k3,k4使k1b1+k2b2+k3b3+k4b4=0
所以b1,b2,b3,b4线性相关.
一个向量能由其他向量线性表示的话,应该是b1=-1/k1 (k2a2+k3a3+.....)
变形为b1k1+b2k2+...+bnkn=0
(k1,k2..kn不全为0)
2.a1=-b1=e1 a2=-b2=e2 .....
w1e1+w2e2+..wnen=0
e1,e2,e..en是线性无关的向量组
所以w1=w2=...wn=0
a1,a2..an也是单位向量组,也是线性无关的呀!
-b1,-b2,..-bn也是单位向量组,也线性无关呀!
3.我看不懂.
4.这个m是什么??
n+1个n维向量线性相关,
因为任何一个n维向量都可以由单位向量e1,e2,...en线性表出,
而n+1>n的,
根据定理有:
若一个向量组可以被一个向量组线性表出,且前一个的个数多于后一个,
那个前一个是线性相关的.
所以n+1维向量线性相关.
b1-b2+b3-b4=0
因为存在不全为0的k1,k2,k3,k4使k1b1+k2b2+k3b3+k4b4=0
所以b1,b2,b3,b4线性相关.
一个向量能由其他向量线性表示的话,应该是b1=-1/k1 (k2a2+k3a3+.....)
变形为b1k1+b2k2+...+bnkn=0
(k1,k2..kn不全为0)
2.a1=-b1=e1 a2=-b2=e2 .....
w1e1+w2e2+..wnen=0
e1,e2,e..en是线性无关的向量组
所以w1=w2=...wn=0
a1,a2..an也是单位向量组,也是线性无关的呀!
-b1,-b2,..-bn也是单位向量组,也线性无关呀!
3.我看不懂.
4.这个m是什么??
n+1个n维向量线性相关,
因为任何一个n维向量都可以由单位向量e1,e2,...en线性表出,
而n+1>n的,
根据定理有:
若一个向量组可以被一个向量组线性表出,且前一个的个数多于后一个,
那个前一个是线性相关的.
所以n+1维向量线性相关.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1.b1=b2-b3+b4
b1-b2+b3-b4=0
因为存在不全为0的k1,k2,k3,k4使k1b1+k2b2+k3b3+k4b4=0
所以b1,b2,b3,b4线性相关.
一个向量能由其他向量线性表示的话,应该是b1=-1/k1 (k2a2+k3a3+.....)
变形为b1k1+b2k2+...+bnkn=0
(k1,k2..kn不全为0)
2.a1=-b1=e1 a2=-b2=e2 .....
w1e1+w2e2+..wnen=0
e1,e2,e..en是线性无关的向量组
所以w1=w2=...wn=0
a1,a2..an也是单位向量组,也是线性无关的呀!
-b1,-b2,..-bn也是单位向量组,也线性无关呀!
4.这个m是什么??
n+1个n维向量线性相关,
因为任何一个n维向量都可以由单位向量e1,e2,...en线性表出,
而n+1>n的,
根据定理有:
若一个向量组可以被一个向量组线性表出,且前一个的个数多于后一个,
那个前一个是线性相关的.
所以n+1维向量线性相关
b1-b2+b3-b4=0
因为存在不全为0的k1,k2,k3,k4使k1b1+k2b2+k3b3+k4b4=0
所以b1,b2,b3,b4线性相关.
一个向量能由其他向量线性表示的话,应该是b1=-1/k1 (k2a2+k3a3+.....)
变形为b1k1+b2k2+...+bnkn=0
(k1,k2..kn不全为0)
2.a1=-b1=e1 a2=-b2=e2 .....
w1e1+w2e2+..wnen=0
e1,e2,e..en是线性无关的向量组
所以w1=w2=...wn=0
a1,a2..an也是单位向量组,也是线性无关的呀!
-b1,-b2,..-bn也是单位向量组,也线性无关呀!
4.这个m是什么??
n+1个n维向量线性相关,
因为任何一个n维向量都可以由单位向量e1,e2,...en线性表出,
而n+1>n的,
根据定理有:
若一个向量组可以被一个向量组线性表出,且前一个的个数多于后一个,
那个前一个是线性相关的.
所以n+1维向量线性相关
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1
存在不全为0的k1,k2,k3,k4使k1b1+k2b2+k3b3+k4b4=0 所以b1,b2,b3,b4线性相关
.一个向量能由其他向量线性表示的话,应该是b1=-1/k1 (k2a2+k3a3+.....) ,k1不等于0,所以b1,b2,b3,b4线性相关
2
存在不全为0的k1,k2,k3,k4使k1b1+k2b2+k3b3+k4b4=0 所以b1,b2,b3,b4线性相关
.一个向量能由其他向量线性表示的话,应该是b1=-1/k1 (k2a2+k3a3+.....) ,k1不等于0,所以b1,b2,b3,b4线性相关
2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1,一个向量能由其他的线性表示,就说线性相关
b1=b2-b3+b4 可以写成b1=-[(-b2)+b3+(-b4)]
这样b1=-1/k1 (k2a2+k3a3+.....)中k1=1,k2=-1.k3=1.k4=-1
3,a1=xa3+ya4 a2=xa3+ya4
所以a1=(x 2x x)+(2y 3y y)=(x+2y 2x+3y x+y)
=(a 3 1)
所以x+2y=a,2x+3y=3,x+y=1解得x=2,y=-1,a=0
同理b=1
4,m有个前提,没有交代清楚
2,题目是不是完整的你再看一下吧好想有点问题
b1=b2-b3+b4 可以写成b1=-[(-b2)+b3+(-b4)]
这样b1=-1/k1 (k2a2+k3a3+.....)中k1=1,k2=-1.k3=1.k4=-1
3,a1=xa3+ya4 a2=xa3+ya4
所以a1=(x 2x x)+(2y 3y y)=(x+2y 2x+3y x+y)
=(a 3 1)
所以x+2y=a,2x+3y=3,x+y=1解得x=2,y=-1,a=0
同理b=1
4,m有个前提,没有交代清楚
2,题目是不是完整的你再看一下吧好想有点问题
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询