菱形ABCD中,∠B=60°,点E在边BC上,点F在边CD上.(1)如图1,若E是BC的中点,∠AEF=60°,求证:BE=DF

菱形ABCD中,∠B=60°,点E在边BC上,点F在边CD上.(1)如图1,若E是BC的中点,∠AEF=60°,求证:BE=DF;(2)如图2,若∠EAF=60°,求证:... 菱形ABCD中,∠B=60°,点E在边BC上,点F在边CD上.(1)如图1,若E是BC的中点,∠AEF=60°,求证:BE=DF;(2)如图2,若∠EAF=60°,求证:△AEF是等边三角形. 展开
 我来答
手机用户27040
推荐于2016-03-16 · TA获得超过101个赞
知道答主
回答量:113
采纳率:100%
帮助的人:126万
展开全部
证明:(1)连接AC,
∵在菱形ABCD中,∠B=60°,
∴AB=BC=CD,∠C=180°-∠B=120°,
∴△ABC是等边三角形,
∵E是BC的中点,
∴AE⊥BC,
∵∠AEF=60°,
∴∠FEC=90°-∠AEF=30°,
∴∠CFE=180°-∠FEC-∠ECF=180°-30°-120°=30°,
∴∠FEC=∠CFE,
∴EC=CF,
∴BE=DF;

(2)∵△ABC是等边三角形,
∴AB=AC,∠ACB=60°,
∴∠B=∠ACF=60°,
∵AD∥BC,
∴∠AEB=∠EAD=∠EAF+∠FAD=60°+∠FAD,
∠AFC=∠D+∠FAD=60°+∠FAD,
∴∠AEB=∠AFC,
在△ABE和△ACF中,
∠B=∠ACF
∠AEB=∠AFC
AB=AC

∴△ABE≌△ACF(AAS),
∴AE=AF,
∵∠EAF=60°,
∴△AEF是等边三角形.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式