如图,在△ABC中,AB=BC,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结DE、DC、AE并延长A
如图,在△ABC中,AB=BC,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结DE、DC、AE并延长AE交CD于F.①说明AE=CD;②若∠C...
如图,在△ABC中,AB=BC,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结DE、DC、AE并延长AE交CD于F.①说明AE=CD;②若∠CAE=20°,求∠CDE的度数;③猜想AF与CD的位置关系,并说明理由?
展开
展开全部
解答:①证明:在△ABE和△CBD中,
,
∴△ABE≌△CBD(SAS),
∴AE=CD;
②解:∵AB=BC,∠ABC=90°,
∴∠BAC=∠BCA=45°,
∵∠CAE=20°,
∴∠BAE=∠BDC=45°-20°=25°,
∴∠AEB=65°,
∴∠EDC=65°-25°=40°;
③AF⊥DC,理由如下:
∵△ABE≌△CBD,
∴∠BAE=∠BCD,
∵∠BAE+∠AEB=90°,
∴∠BCD+∠CEF=90°,
∴∠EFC=90°,
即AF⊥DC.
|
∴△ABE≌△CBD(SAS),
∴AE=CD;
②解:∵AB=BC,∠ABC=90°,
∴∠BAC=∠BCA=45°,
∵∠CAE=20°,
∴∠BAE=∠BDC=45°-20°=25°,
∴∠AEB=65°,
∴∠EDC=65°-25°=40°;
③AF⊥DC,理由如下:
∵△ABE≌△CBD,
∴∠BAE=∠BCD,
∵∠BAE+∠AEB=90°,
∴∠BCD+∠CEF=90°,
∴∠EFC=90°,
即AF⊥DC.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询