已知直角坐标系中有一点A(-4,3),点B在x轴上,△AOB是等腰三角形.(1)求满足条件的所有点B的坐标.

已知直角坐标系中有一点A(-4,3),点B在x轴上,△AOB是等腰三角形.(1)求满足条件的所有点B的坐标.(直接写出答案)(2)求过O、A、B三点且开口向下的抛物线的函... 已知直角坐标系中有一点A(-4,3),点B在x轴上,△AOB是等腰三角形.(1)求满足条件的所有点B的坐标.(直接写出答案)(2)求过O、A、B三点且开口向下的抛物线的函数解析式.(只需求出满足条件的即可).(3)在(2)中求出的抛物线上存在点p,使得以O、A、B、P四点为顶点的四边形是梯形,求满足条件的所有点P的坐标及相应梯形的面积. 展开
 我来答
手机用户03155
2015-01-19 · 超过66用户采纳过TA的回答
知道答主
回答量:107
采纳率:0%
帮助的人:153万
展开全部
作AC⊥x轴,由已知得OC=4,AC=3,OA=
OC2+AC2
=5.
(1)当OA=OB=5时,
如果点B在x轴的负半轴上,如图(1),点B的坐标为(-5,0);
如果点B在x轴的正半轴上,如图(2),点B的坐标为(5,0);

当OA=AB时,点B在x轴的负半轴上,如图(3),BC=OC,则OB=8,点B的坐标为(-8,0);
当AB=OB时,点B在x轴的负半轴上,如图(4),在x轴上取点D,使AD=OA,可知OD=8.
由∠AOB=∠OAB=∠ODA,可知△AOB∽△ODA,
OB
OA
OA
AD

解得OB=
25
8

点B的坐标为(-
25
8
,0).


(2)当AB=OA时,抛物线过O(0,0),A(-4,3),B(-8,0)三点,
设抛物线的函数表达式为y=ax2+bx,
可得方程组
64a?8b=0
16a?4b=3

解得
a=?
3
16
b=?
3
2

∴y=-
3
16
x2-
3
2
x;
当OA=OB时,同理得y=-
3
4
x2-
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消