已知二次函数y=ax2+bx+c的图象与x轴交于点(-2,0)、(x1,0),且1<x1<2,与y轴的正半轴的交点在(0

已知二次函数y=ax2+bx+c的图象与x轴交于点(-2,0)、(x1,0),且1<x1<2,与y轴的正半轴的交点在(0,2)的下方.下列结论:①b>0;②a+b+c<0... 已知二次函数y=ax2+bx+c的图象与x轴交于点(-2,0)、(x1,0),且1<x1<2,与y轴的正半轴的交点在(0,2)的下方.下列结论:①b>0;②a+b+c<0;③4a-2b+c=0;④2a-b<0;⑤2a+c>0.其中正确结论的个数是______个. 展开
 我来答
御坂01577
2014-08-17 · 超过69用户采纳过TA的回答
知道答主
回答量:114
采纳率:0%
帮助的人:156万
展开全部
如图:

①由图象开口向下知a<0,
由y=ax2+bx+c与X轴的另一个交点坐标为(x1,0 ),且1<x1<2,
则该抛物线的对称轴为x=-
b
2a
=
-2+x1
2
>-
1
2
,即
b
a
<1,
由a<0,两边都乘以a得:b>a,
∵a<0,对称轴x=-
b
2a
<0,
∴b<0;
此项错误;
②因为1<x1<2,
当x=1时,对应图象上的点在x轴上方,所以a+b+c>0;
所以此项错误;
③由y=ax2+bx+c
与X轴的交点坐标为(-2,0)得:
a×(-2)2+b×(-2 )+c=0,即4a-2b+c=0,
所以正确;
④由4a-2b+c=0得2a-b=-
c
2
,而0<c<2,∴<2a-b<0,所以结论正确.
⑤由一元二次方程根与系数的关系知x1x2=
c
a
<-2,结合a<0得2a+c>0,所以结论正确;
故填正确结论的个数是3个.
故答案为:3.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式