求学霸这道题第二问的解法,与第一问没关系,第一问算出的通项公式不能带到第二问。谢谢啦。
2个回答
展开全部
反证法:假设成等比数列,则
s(n+1)^2=sn*s(n+2)=[s(n+1)-a(n+1)][s(n+1)+a(n+2)]
=s(n+1)^2+[a(n+2)-a(n+1)]s(n+1)-a(n+1)a(n+2)
则[a(n+2)-a(n+1)]s(n+1)=a(n+1)a(n+2)
则d[(n+1)a+(1+n)nd/2]=(a+nd)[a+(n+1)d]=a^2+(2n+1)ad+n(n+1)d^2
a^2+nad+n(n+1)d^2/2=0
(a+nd/2)^2+[n(n+1)/2-n^2/4]d^2=0=(a+nd/2)^2+(n^2+2n)d^2/4
所以(n^2+2n)d^2/4=0,而且(a+nd/2)^2=0,
因为n>0,所以d=0,a=0
所以sn,s(n+1),s(n+2)全为0,不是等比数列矛盾
得证
s(n+1)^2=sn*s(n+2)=[s(n+1)-a(n+1)][s(n+1)+a(n+2)]
=s(n+1)^2+[a(n+2)-a(n+1)]s(n+1)-a(n+1)a(n+2)
则[a(n+2)-a(n+1)]s(n+1)=a(n+1)a(n+2)
则d[(n+1)a+(1+n)nd/2]=(a+nd)[a+(n+1)d]=a^2+(2n+1)ad+n(n+1)d^2
a^2+nad+n(n+1)d^2/2=0
(a+nd/2)^2+[n(n+1)/2-n^2/4]d^2=0=(a+nd/2)^2+(n^2+2n)d^2/4
所以(n^2+2n)d^2/4=0,而且(a+nd/2)^2=0,
因为n>0,所以d=0,a=0
所以sn,s(n+1),s(n+2)全为0,不是等比数列矛盾
得证
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询