洛必达法则的使用条件?

 我来答
惠企百科
2022-12-01 · 百度认证:北京惠企网络技术有限公司官方账号
惠企百科
惠企百科网是一家科普类综合网站,关注热门中文知识,集聚互联网精华中文知识,本着自由开放、分享价值的基本原则,向广大网友提供专业的中文知识平台。
向TA提问
展开全部
  三个条件。\r\n  1 分子分母同趋向于0或无穷大 。\r\n  2 在变量所趋向的值的去心邻域内,分子和分母均可导 。\r\n  3 分子和分母分别求完导后比值存在或趋向于无穷大。\r\n  洛必达法则(L'Hôpital's rule)是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。法国数学家洛必达(Marquis de l'Hôpital)在他1696年的著作《阐明曲线的无穷小分析》(Analyse des infiniment petits pour l'intelligence des lignes courbes)发表了这法则,因此以他为命名。但一般认为这法则是由瑞士数学家约翰·伯努利(Johann Bernoulli)首先发现,因此也被叫作伯努利法则(Bernoulli's rule)。
无名的旅游玩乐
高粉答主

推荐于2020-08-01 · 繁杂信息太多,你要学会辨别
知道小有建树答主
回答量:638
采纳率:100%
帮助的人:17万
展开全部

在运用洛必达法则之前,首先要完成两项任务:

1、分子分母的极限是否都等于零(或者无穷大);

2、分子分母在限定的区域内是否分别可导。

如果这两个条件都满足,接着求导并判断求导之后的极限是否存在:如果存在,直接得到答案;如果不存在,则说明此种未定式不可用洛必达法则来解决;如果不确定,即结果仍然为未定式,再在验证的基础上继续使用洛必达法则。



扩展资料:

注意事项

1、求极限是高等数学中最重要的内容之一,也是高等数学的基础部分,因此熟练掌握求极限的方法对学好高等数学具有重要的意义。洛比达法则用于求分子分母同趋于零的分式极限。

2、若条件符合,洛必达法则可连续多次使用,直到求出极限为止。

3、洛必达法则是求未定式极限的有效工具,但是如果仅用洛必达法则,往往计算会十分繁琐,因此一定要与其他方法相结合,比如及时将非零极限的乘积因子分离出来以简化计算、乘积因子用等价量替换等等。


参考资料来源:百度百科-无穷大量

参考资料来源:百度百科-洛必达法则




本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
橘说娱乐
高粉答主

推荐于2018-06-24 · 繁杂信息太多,你要学会辨别
知道大有可为答主
回答量:1.8万
采纳率:90%
帮助的人:1773万
展开全部
  三个条件。
  1 分子分母同趋向于0或无穷大 。
  2 在变量所趋向的值的去心邻域内,分子和分母均可导 。
  3 分子和分母分别求完导后比值存在或趋向于无穷大。
  洛必达法则(L'Hôpital's rule)是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。法国数学家洛必达(Marquis de l'Hôpital)在他1696年的著作《阐明曲线的无穷小分析》(Analyse des infiniment petits pour l'intelligence des lignes courbes)发表了这法则,因此以他为命名。但一般认为这法则是由瑞士数学家约翰·伯努利(Johann Bernoulli)首先发现,因此也被叫作伯努利法则(Bernoulli's rule)。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
你的眼神唯美
2020-08-01 · 海离薇:不定积分,求导验证。
你的眼神唯美
采纳数:1541 获赞数:61960

向TA提问 私信TA
展开全部

变限积分洛必达法则题库集锦大全。。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
horizon_fly
推荐于2017-09-04 · TA获得超过3449个赞
知道小有建树答主
回答量:520
采纳率:75%
帮助的人:95.5万
展开全部
设函数f(x)和F(x)满足下列条件:
(1)x→a时,lim f(x)=0,lim F(x)=0;
(2)在点a的某去心邻域内f(x)与F(x)都可导,且F(x)的导数不等于0;
(3)x→a时,lim(f'(x)/F'(x))存在或为无穷大
则 x→a时,lim(f(x)/F(x))=lim(f'(x)/F'(x))
满意请采纳
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(8)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式