分解因式:(x+y)^4+(x^2-y^2)^2+(x-y)^4
展开全部
(x+y)^4+(x^2-y^2)^2+(x-y)^4 =(x+y)^4+[(x+y)*(x-y)]^2+(x-y)^4
=(x+y)^4+2[(x+y)*(x-y)]^2+(x-y)^4-[(x+y)*(x-y)]^2
=[(x+y)^2+(x-y)^2]^2-[(x+y)*(x-y)]^2
=[x^2+2xy+y^2+x^2-2xy+y^2]^2-[x^2-y^2]^2
=[2(x^2+y^2)]^2-[x^2-y^2]^2
=4(x^4+2x^2*y^2+y^4)-(x^4-2x^2*y^2+y^4)
=4x^4+8x^2*y^2+4y^4-x^4+2x^2*y^2-y^4
=3x^4+10x^2*y^2+3y^4
=(3x^2+y^2)(x^2+3y^2)
=(x+y)^4+2[(x+y)*(x-y)]^2+(x-y)^4-[(x+y)*(x-y)]^2
=[(x+y)^2+(x-y)^2]^2-[(x+y)*(x-y)]^2
=[x^2+2xy+y^2+x^2-2xy+y^2]^2-[x^2-y^2]^2
=[2(x^2+y^2)]^2-[x^2-y^2]^2
=4(x^4+2x^2*y^2+y^4)-(x^4-2x^2*y^2+y^4)
=4x^4+8x^2*y^2+4y^4-x^4+2x^2*y^2-y^4
=3x^4+10x^2*y^2+3y^4
=(3x^2+y^2)(x^2+3y^2)
更多追问追答
追问
你这也叫分解因式?
追答
把一个多项式在一个范围(如有理数范围内分解,即所有项均为有理数)化为几个最简整式的积的形式,这种变形叫做因式分解,也叫作分解因式。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询