在三角形ABC 中,AB=√6-√2,∠C=30°,则AC+BC的最大值=
4个回答
展开全部
解:已知在△ABC中,AB=-√2+√6,∠C=30°
设∠A>∠B,
过A点作AD⊥BC,交BC于D点。
在直角△ACD中
∠C=30°,AD=AC/2,CD=AC*cos30°=(√3/2)*AC
在直角△ABD中
BD^2=AB^2-AD^2
=(-√2+√6)^2-(AC/2)^2
=8-4√3-AC^2/4
BD=√(8-4√3-AC^2/4)
BC=CD+BD=(√3/2)*AC+√(8-4√3-AC^2/4)
AC+BC
=AC+(√3/2)*AC+√(8-4√3-AC^2/4)
=(1+√3/2)*AC+√(8-4√3-AC^2/4)
设AC+BC=s,AC=x,则
s=(1+√3/2)x+√(8-4√3-x^2/4)
s-(1+√3/2)x=√(8-4√3-x^2/4)
[s-(1+√3/2)x]^2=8-4√3-x^2/4
(2+√3)x^2-(2+√3)sx+s^2-4(2-√3)=0
x^2-sx+[s^2-4(2-√3)]/(2+√3)=0
判别式△=(-s)^2-4*[s^2-4(2-√3)]/(2+√3)≥0
s^2≤16
因s>0
故s的最大值=4
答:AC+BC的最大值=4
设∠A>∠B,
过A点作AD⊥BC,交BC于D点。
在直角△ACD中
∠C=30°,AD=AC/2,CD=AC*cos30°=(√3/2)*AC
在直角△ABD中
BD^2=AB^2-AD^2
=(-√2+√6)^2-(AC/2)^2
=8-4√3-AC^2/4
BD=√(8-4√3-AC^2/4)
BC=CD+BD=(√3/2)*AC+√(8-4√3-AC^2/4)
AC+BC
=AC+(√3/2)*AC+√(8-4√3-AC^2/4)
=(1+√3/2)*AC+√(8-4√3-AC^2/4)
设AC+BC=s,AC=x,则
s=(1+√3/2)x+√(8-4√3-x^2/4)
s-(1+√3/2)x=√(8-4√3-x^2/4)
[s-(1+√3/2)x]^2=8-4√3-x^2/4
(2+√3)x^2-(2+√3)sx+s^2-4(2-√3)=0
x^2-sx+[s^2-4(2-√3)]/(2+√3)=0
判别式△=(-s)^2-4*[s^2-4(2-√3)]/(2+√3)≥0
s^2≤16
因s>0
故s的最大值=4
答:AC+BC的最大值=4
展开全部
在三角形ABC 中作外接圆
当AC=BC时,AC+BC的最大值
余弦定理得AC=BC=2
AC+BC的最大值=4
AB^2=AC^2+CB^2+2cosC余弦定理
当AC=BC时,AC+BC的最大值
余弦定理得AC=BC=2
AC+BC的最大值=4
AB^2=AC^2+CB^2+2cosC余弦定理
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
=2(√6-√2)
我觉得通过余弦定理利用不等式性质做
我觉得通过余弦定理利用不等式性质做
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
余弦定理
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询