第七题怎么写
1个回答
2015-08-19
展开全部
由an+1+an−1an+1−an+1=n可得an+1+an−1=nan+1−nan+n
∴(1−n)an+1+(1+n)an=1+n
∴an+1=n+1n−1an−n+1n−1=1n−1(an−1)×(n+1)
∴an+1n+1=1n−1an−1n−1=nn−1⋅ann−nn−1⋅1n
∴an+1n+1−1=nn−1(ann−1)
∴1n(an+1n+1−1)=1n−1(ann−1)
∴{1n−1(ann−1)}为常数列
而1n−1(ann−1)=12−1⋅(a22−1)=2,
an=[2(n−1)+1]n=2n2−n
当n=1时,6+a1−16−a1+1=1可得a1=1适合上式
故:2n2−n
∴(1−n)an+1+(1+n)an=1+n
∴an+1=n+1n−1an−n+1n−1=1n−1(an−1)×(n+1)
∴an+1n+1=1n−1an−1n−1=nn−1⋅ann−nn−1⋅1n
∴an+1n+1−1=nn−1(ann−1)
∴1n(an+1n+1−1)=1n−1(ann−1)
∴{1n−1(ann−1)}为常数列
而1n−1(ann−1)=12−1⋅(a22−1)=2,
an=[2(n−1)+1]n=2n2−n
当n=1时,6+a1−16−a1+1=1可得a1=1适合上式
故:2n2−n
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询