设随机变量X与Y相互独立,且分别服从二项分布B(n,p)
X,Y是相互独立的随机变量,都服从参数为n,p的二项分布求证:Z=X+Y服从参数为2n,p的二项分布。
由于X,Y都服从参数为n,p的二项分布,P(X=i)=C(n,i)p^i(1-p)^(n-i),P(Y=i)=C(n,i)p^i(1-p)^(n-i)。
设Z=X+Y,由于X,Y是相互独立,因此
P(Z=k)=P(X+Y=k)=∑(i=0,k)P(X=i,Y=k-i)=∑(i=0,k)P(X=i)P(Y=k-i)
=∑(i=0,k)C(n,i)p^i(1-p)^(n-i)C(n,k-i)p^(k-i)(1-p)^(n-k+i)
=∑(i=0,k)C(n,i)C(n,k-i))p^k(1-p)^(2n-k)
=C(2n,k)p^k(1-p)^(2n-k)
故Z=X+Y服从参数为2n,p的二项分布。
扩展资料
二项分布的应用条件:
1、各观察单位只能具有相互对立的一种结果,如阳性或阴性,生存或死亡等,属于两分类资料。
2、已知发生某一结果(阳性)的概率为π,其对立结果的概率为1-π,实际工作中要求π是从大量观察中获得比较稳定的数值。
3、n次试验在相同条件下进行,且各个观察单位的观察结果相互独立,即每个观察单位的观察结果不会影响到其他观察单位的结果。如要求疾病无传染性、无家族性等。
其实是组合计算的问题,令Z=X+Y,
P(Z=t)=∑(i=0~t)C(n,i)p^i*C(m,t-i)p^(t-i)=p^tC(n+m,t)
其中b>a时,C(a,b)=0
结果用二项式定力很容易证明,也是组合运算的一个基本定理
表示出Z的分布列,可以看出Z~B(m+n,p)
其实是组合计算的问题,令Z=X+Y, P(Z=t)=∑(i=0~t)C(n,i)p^i*C(m,t-i)p^(t-i)=p^tC(n+m,t) 其中b>a时,C(a,b)=0 结果用二项式定力很容易证明,也是组合运算的一个基本定理表示出Z的分布列,可以看出Z~B(m+n,p)。
扩展资料:
线性代数中的向量独立(线性无关),即两个向量不成比例,不可互相表示,没有多余。
联系:生活中的独立,独立的人,即人的独一无二,不可被替代;模块独立:即各个模块之间功能独立,(功能不重复,且不能互相的替代)等等。
要有两随机事件 A、B 。 A、B 发生的概率分别为 P(A) 和 P(B) , AB 事件同时发生的概率为 P(AB) 若 P(A)×P(B)=P(AB) ,则 A 与 B 相互独立。事件 A 发生的概率不影响事件 B 发生的概率,反应的是概率运算上的关系。
参考资料来源:百度百科-独立
P(Z=t)=∑(i=0~t)C(n,i)p^i*C(m,t-i)p^(t-i)=p^tC(n+m,t)
其中b>a时,C(a,b)=0
结果用二项式定力很容易证明,也是组合运算的一个基本定理
表示出Z的分布列,可以看出Z~B(m+n,p)