展开全部
增广矩阵 (A, b) =
[1 2 -1 3 4]
[1 1 -3 5 5]
[0 1 2 -2 k]
行初等变换为
[1 2 -1 3 4]
[0 -1 -2 2 1]
[0 1 2 -2 k]
行初等变换为
[1 0 -5 7 6]
[0 -1 -2 2 1]
[0 0 0 0 k+1]
行初等变换为
[1 0 -5 7 6]
[0 1 2 -2 -1]
[0 0 0 0 k+1]
系数矩阵的秩 r(A) = 2,
非齐次线性方程组有解的充要条件是 r(A, b) = r(A) = 2
则必须 k+1 = 0, k = -1.
此时,方程组同解变形为
x1 = 6+5x3-7x4
x2 = -1-2x3+2x4
取 x3 = x4 = 0 ,得特解 (6, -1, 0, 0)^T,
导出组即对应的齐次方程是
x1 = 5x3-7x4
x2 = -2x3+2x4
取 x3 =1, x4 = 0,得基础特解系 (5, -2, 1, 0)^T,
取 x3 =0, x4 = 1,得基础特解系 (-7, 2, 0, 1)^T,
则 k = -1 时通解是
x = (6, -1, 0, 0)^T+ k (5, -2, 1, 0)^T+ c(-7, 2, 0, 1)^T
其中k, c 是任意常数。
[1 2 -1 3 4]
[1 1 -3 5 5]
[0 1 2 -2 k]
行初等变换为
[1 2 -1 3 4]
[0 -1 -2 2 1]
[0 1 2 -2 k]
行初等变换为
[1 0 -5 7 6]
[0 -1 -2 2 1]
[0 0 0 0 k+1]
行初等变换为
[1 0 -5 7 6]
[0 1 2 -2 -1]
[0 0 0 0 k+1]
系数矩阵的秩 r(A) = 2,
非齐次线性方程组有解的充要条件是 r(A, b) = r(A) = 2
则必须 k+1 = 0, k = -1.
此时,方程组同解变形为
x1 = 6+5x3-7x4
x2 = -1-2x3+2x4
取 x3 = x4 = 0 ,得特解 (6, -1, 0, 0)^T,
导出组即对应的齐次方程是
x1 = 5x3-7x4
x2 = -2x3+2x4
取 x3 =1, x4 = 0,得基础特解系 (5, -2, 1, 0)^T,
取 x3 =0, x4 = 1,得基础特解系 (-7, 2, 0, 1)^T,
则 k = -1 时通解是
x = (6, -1, 0, 0)^T+ k (5, -2, 1, 0)^T+ c(-7, 2, 0, 1)^T
其中k, c 是任意常数。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询