设f(x)连续,F(x)=∫(上限x^2,下限0) tf(x-t)dt,求F(x)的导数 我来答 可选中1个或多个下面的关键词,搜索相关资料。也可直接点“搜索资料”搜索整个问题。 f(x) 导数 下限 tf x-t 搜索资料 1个回答 #热议# 不吃早饭真的会得胆结石吗? 的大吓是我 2015-08-22 · TA获得超过3530个赞 知道大有可为答主 回答量:1333 采纳率:97% 帮助的人:479万 我也去答题访问个人页 关注 展开全部 积分函数求导是有法则的,如果有疑问可以查看含参变量积分内容知识(数学分析课本是有的),回答如下: 追问 嗷嗷,谢谢!想问一下那个积分上限怎么变成了x-x^2的啊 追答 下限t等于0此时u等于x,当t变为x²时,u相应变为x–x² 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 其他类似问题 2021-09-08 设f(x)连续,且满足f(x)=e^x+∫(0,x)tf(x-t)dt,求f(x) 1 2022-06-04 变上限积分F(x)=∫(上限x,下限0)tf(t)dt,求F(x)的导数 2022-06-04 设x>0时,f(x)可导,且f(x)=1+∫ (1/x)f(t)dt,(上限x,下限1),求f(x) 2022-05-25 设f(x)连续,f(x)=sinx-∫(上限x下限0)f(t)dt,求f(x) 2022-06-08 设f(x)连续,且f(0)=1,则limx→0∫(上限x下限0)(f(t)dt)/2x 2023-08-09 设f(x)有一阶导数且满足∫0到1f(tx)dt=f(x)+xsinx,则f(x)= 2022-07-04 设当x>0时,f(x)可导,且满足方程f(x)=1+1/x ∫f(t)dt{上限x下限1},求f(x) 2022-06-17 设函数F(X)具有二阶连续导数,且满足F(X)=[微分(上限X下限0)F(1-t)dt]+1,求F(X) 更多类似问题 > 为你推荐: