高一数学题。求过程
展开全部
acosC+√3asinC-b-c=0
sinAcosC+√3sinAsinC-sinB-sinC=0
sinAcosC+√3sinAsinC-sin(A+C)-sinC=0
sinAcosC+√3sinAsinC-sinAcosC-cosAsinC-sinC=0
√3sinAsinC-cosAsinC-sinC=0
sinC(√3sinA-cosA-1)=0
√3sinA-cosA-1=0
√3sinA-cosA=1
√3/2sinA-1/2cosA=1/2
sin(A-π/6)=1/2
A-π/6=π/6 或 A-π/6=5π/6
A=π/3 或A=2π/3
2)a=4 ,2R=b/sinB=c/sinc=a/sinA=4/sinπ/3=8√3/3
a+b+c=4+2R(sinB+sinC)=4+8√3/3(sinB+sinC)
=4+8√3/3[sinB+sin(2π/3-B)
=4+8√3/3(sinB+√3/2cosB+1/2sinB)
=4+8√3/3(3/2sinB+√3/2cosB)
=4+8(√3/2sinB+1/2cosB)
=4+8sin(B+π/6)
B在(0,2π/3),B+π/6在(π/6,5π/6)
sin(B+π/6)在(π/6,5π/6)上值域为:(1/2,1]
a+b+c=4+8sin(B+π/6)值域为:(8,12]
a+b+c的最大值=12
sinAcosC+√3sinAsinC-sinB-sinC=0
sinAcosC+√3sinAsinC-sin(A+C)-sinC=0
sinAcosC+√3sinAsinC-sinAcosC-cosAsinC-sinC=0
√3sinAsinC-cosAsinC-sinC=0
sinC(√3sinA-cosA-1)=0
√3sinA-cosA-1=0
√3sinA-cosA=1
√3/2sinA-1/2cosA=1/2
sin(A-π/6)=1/2
A-π/6=π/6 或 A-π/6=5π/6
A=π/3 或A=2π/3
2)a=4 ,2R=b/sinB=c/sinc=a/sinA=4/sinπ/3=8√3/3
a+b+c=4+2R(sinB+sinC)=4+8√3/3(sinB+sinC)
=4+8√3/3[sinB+sin(2π/3-B)
=4+8√3/3(sinB+√3/2cosB+1/2sinB)
=4+8√3/3(3/2sinB+√3/2cosB)
=4+8(√3/2sinB+1/2cosB)
=4+8sin(B+π/6)
B在(0,2π/3),B+π/6在(π/6,5π/6)
sin(B+π/6)在(π/6,5π/6)上值域为:(1/2,1]
a+b+c=4+8sin(B+π/6)值域为:(8,12]
a+b+c的最大值=12
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询