已知数列{An},且An=1/n(n+2),求Sn
4个回答
展开全部
An=1/n(n+2)
=0.5*[1/n-1/(n+2)]
所以,Sn=A1+A2+...+A(n-1)+An
=0.5*[1/1-1/3+1/2-1/4+1/3-1/5......+1/(n-3)-1/(n-1)+1/(n-2)-1/n]
=0.5*[1.5-1/(n-1)-1/n]
=0.75-1/[2n(n-1)]
这是数列求和的常用方法:裂项相消
=0.5*[1/n-1/(n+2)]
所以,Sn=A1+A2+...+A(n-1)+An
=0.5*[1/1-1/3+1/2-1/4+1/3-1/5......+1/(n-3)-1/(n-1)+1/(n-2)-1/n]
=0.5*[1.5-1/(n-1)-1/n]
=0.75-1/[2n(n-1)]
这是数列求和的常用方法:裂项相消
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
an=1/n(n+2)
a1=1/1*3=1/2(1-1/3)
a2=1/2*4=1/2(1/2-1/4)
a3=1/3*5=1/2(1/3-1/5)
...
an-1=1/(n-1)(n+1)=1/2(1/(n-1)-1/(n+1))
an=1/n(n+2)=1/2(1/n-1/(n+2))
相加,有:
Sn=1/2(1-1/3+1/2-1/4+1/3-1/5+1/4-1/6+...+1/(n-1)-1/(n+1)+1/n-1/(n+2))
=1/2(1+1/2-1/(n+1)-1/(n+2))
=3/4-(2n+3)/[2(n+1)(n+2)]
a1=1/1*3=1/2(1-1/3)
a2=1/2*4=1/2(1/2-1/4)
a3=1/3*5=1/2(1/3-1/5)
...
an-1=1/(n-1)(n+1)=1/2(1/(n-1)-1/(n+1))
an=1/n(n+2)=1/2(1/n-1/(n+2))
相加,有:
Sn=1/2(1-1/3+1/2-1/4+1/3-1/5+1/4-1/6+...+1/(n-1)-1/(n+1)+1/n-1/(n+2))
=1/2(1+1/2-1/(n+1)-1/(n+2))
=3/4-(2n+3)/[2(n+1)(n+2)]
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
An=1/n(n+2)=1/2(1/N-1/(N+2))
则Sn=1/2(1-1/3+1/2-1/4+1/3-1/5+......1/(n-1)-1/(n+1)+1/n-1/(n+2))=1/2(1+1/2-1/(n+1)-1/(n+2))
=1/2(3/2-1/(n+1)-1/(n+2))
下面就不化简了,谢谢
则Sn=1/2(1-1/3+1/2-1/4+1/3-1/5+......1/(n-1)-1/(n+1)+1/n-1/(n+2))=1/2(1+1/2-1/(n+1)-1/(n+2))
=1/2(3/2-1/(n+1)-1/(n+2))
下面就不化简了,谢谢
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
2An=2/(n)(n+2)=1/n-1/(n+2)
2Sn=1/1-1/3+1/2-1/4+1/3-1/5+1/4-1/6+1/5-1/7……
可以抵消
n为奇数时……
2Sn=3/2-1/(n+1)-1/(n+2)
Sn=3/4-1/[2(n+1)]-1/[2(n+2)]
n为偶数时……
2Sn=3/2-1/(n+1)-1/(n+2)
Sn=3/4-1/[2(n+1)]-1/[2(n+2)]
所以
Sn=3/4-1/[2(n+1)]-1/[2(n+2)]
2Sn=1/1-1/3+1/2-1/4+1/3-1/5+1/4-1/6+1/5-1/7……
可以抵消
n为奇数时……
2Sn=3/2-1/(n+1)-1/(n+2)
Sn=3/4-1/[2(n+1)]-1/[2(n+2)]
n为偶数时……
2Sn=3/2-1/(n+1)-1/(n+2)
Sn=3/4-1/[2(n+1)]-1/[2(n+2)]
所以
Sn=3/4-1/[2(n+1)]-1/[2(n+2)]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询