射频识别技术的工作频率
其实RFID技术首先在低频得到广泛的应用和推广。该频率主要是通过电感耦合的方式进行工作, 也就是在读写器线圈和感应器线圈间存在着变压器耦合作用。通过读写器交变场的作用在感应器天线中感应的电压被整流,可作供电电压使用. 磁场区域能够很好的被定义,但是场强下降的太快。
特性:
1. 工作在低频的感应器的一般工作频率从120KHz到134KHz,TI的工作频率为134.2KHz。该频段的波长大约为2500m.
2. 除了金属材料影响外,一般低频能够穿过任意材料的物品而不降低它的读取距离。
3. 工作在低频的读写器在全球没有任何特殊的许可限制。
4.低频产品有不同的封装形式。好的封装形式就是价格太贵,但是有10年以上的使用寿命。
5.虽然该频率的磁场区域下降很快,但是能够产生相对均匀的读写区域。
6.相对于其他频段的RFID产品,该频段数据传输速率比较慢。
7.感应器的价格相对与其他频段来说要贵。
主要应用:
1. 畜牧业的管理系统。
2. 汽车防盗和无钥匙开门系统的应用。
3. 马拉松赛跑系统的应用。
4. 自动停车场收费和车辆管理系统。
5. 自动加油系统的应用。
6. 酒店门锁系统的应用。
7. 门禁和安全管理系统。
符合国际标准的: ISO 11784 RFID畜牧业的应用-编码结构。 ISO 11785 RFID畜牧业的应用-技术理论。 ISO 14223-1 RFID畜牧业的应用-空气接口。 ISO 14223-2 RFID畜牧业的应用-协议定义。 ISO 18000-2 定义低频的物理层、防冲撞和通讯协议。 DIN 30745 主要是欧洲对垃圾管理应用定义的标准。 在该频率的感应器不再需要线圈进行绕制,可以通过腐蚀或者印刷的方式制作天线。感应器一般通过负载调制的方式进行工作。也就是通过感应器上的负载电阻的接通和断开促使读写器天线上的电压发生变化,实现用远距离感应器对天线电压进行振幅调制。如果人们通过数据控制负载电压的接通和断开,那么这些数据就能够从感应器传输到读写器。
值得关注的是,在13.56MHz频段中主要有ISO14443和ISO15693两个标准来组成,ISO14443俗称Mifare 1系列产品,识别距离近但价格低保密性好,常作为公交卡、门禁卡来使用。ISO15693的最大优点在于他的识别效率,通过较大功率的阅读器可将识别距离扩展至1.5米以上,由于波长的穿透性好在处理密集标签时有优于超高频的读取效果。
特性:
1. 工作频率为13.56MHz,该频率的波长大概为22m。
2. 除了金属材料外,该频率的波长可以穿过大多数的材料,但是往往会降低读取距离。标签需要离开金属4mm以上距离,其抗金属效果在几个频段中较为优良。
3. 该频段在全球都得到认可并没有特殊的限制。
4. 感应器一般以电子标签的形式。
5. 虽然该频率的磁场区域下降很快,但是能够产生相对均匀的读写区域。
6.该系统具有防冲撞特性,可以同时读取多个电子标签。
7. 可以把某些数据信息写入标签中。
8. 数据传输速率比低频要快,价格不是很贵。
主要应用:
1.图书管理系统的应用
2.瓦斯钢瓶的管理应用
3.服装生产线和物流系统的管理和应用
4.三表预收费系统
5.酒店门锁的管理和应用
6.大型会议人员通道系统
7.固定资产的管理系统
8.医药物流系统的管理和应用
9.智能货架的管理
10.珠宝盘点管理。
符合的国际标准: ISO/IEC 14443 近耦合IC卡,最大的读取距离为10cm. ISO/IEC 15693 疏耦合IC卡,最大的读取距离为1m. ISO/IEC 18000-3 该标准定义了13.56MHz系统的物理层,防冲撞算法和通讯协议。 13.56MHz ISM Band Class 1 定义13.56MHz符合EPC的接口定义。 超高频系统通过电场来传输能量。电场的能量下降的不是很快,但是读取的区域不是很好进行定义。该频段读取距离比较远,无源可达10m左右。主要是通过电容耦合的方式进行实现。
特性:
1. 在该频段,全球的定义不是很相同-欧洲和部分亚洲定义的频率为868MHz,北美定义的频段为902到905MHz之间,在日本建议的频段为950到956之间。该频段的波长大概为30cm左右。
2. 该频段功率输出没有统一的定义(美国定义为4W,欧洲定义为500mW,可能欧洲限制会上升到2W EIRP。
3. 超高频频段的电波不能通过许多材料,特别是金属,液体,灰尘,雾等悬浮颗粒物质,可以说环境对超高频段的影响是很大的。
4. 电子标签的天线一般是长条和标签状。天线有线性和圆极化两种设计,满足不同应用的需求。
5. 该频段有好的读取距离,但是对读取区域很难进行定义。
6. 有很高的数据传输速率,在很短的时间可以读取大量的电子标签。
主要应用:
1. 供应链上的管理和应用
2. 生产线自动化的管理和应用
3. 航空包裹的管理和应用
4.集装箱的管理和应用
5. 铁路包裹的管理和应用
6. 后勤管理系统的应用。
符合的国际标准: ISO/IEC 18000-6 定义了超高频的物理层和通讯协议;空气接口定义了Type A和Type B两部分;支持可读和可写操作。 EPCglobal 定义了电子物品编码的结构和甚高频的空气接口以及通讯的协议。例如:Class 0,Class 1,UHF Gen2。 Ubiquitous ID 日本的组织,定义了UID编码结构和通信管理协议。 在将来,超高频的产品会得到大量的应用。例如WalMart,Tesco,美国国防部和麦德龙超市都会在它们的供应链上应用RFID技术。
有源RFID技术(任意频段,只要通电均为有源,常用的为433M,2.4G和5.8G)
有源RFID具备低发射功率、通信距离长、传输数据量大,可靠性高和兼容性好等特点,与无源RFID相比,在技术上的优势非常明显。被广泛地应用到公路收费、港口货运管理等应用中。
射频识别作为一种新兴的自动识别技术,在中国拥有巨大的发展潜力。 MES精益制造管理系统又称APS+MES系统(高级排产计划系统+制造执行系统),是根据不同行业的制造流程,可选择性地集合系统管理软件和人机界面设备(PLC触摸屏)、LED生产看板、LCD看板、PDA智能手持终端、工业平板电脑、条码采集器、传感器、I/O、DCS、RFID、工业AP、WIFI等多类硬件的综合智能一体化系统。它由一组共享数据的程序,它能控制物料、仓库、设备、人员、品质、工艺、异常、流程指令和其他设施等工厂资源以提高生产效率。应用范围:制造型企业。
使用RFID技术后指标可达:生产周期缩短35%;数据输入时间缩短36%;在制品减少32%;文书工作减少90%;交货期缩短22%;不合格产品降低22%;文书丢失减少95%;信息的反馈效率提升3860倍。
低频频段一般指频率在30kHz~300kHz之间的射频识别系统,典型的工作频率有125kHz和133kHz。高频频段通常是指频率在3MHz~30MHz之间的射频识别系统,典型的工作频率为13.56MHz。超高频频段是指频率在300MHz~3GHz之间的射频识别系统,典型的超高频工作频率为433MHz、902MHz~928MHz、2.45GHz和5.8GHz等。微波频段通常是指频率在2.45GHz以上的射频识别系统。
这些频段的应用主要取决于不同的物理特性、传输速率和系统成本等因素。在实际应用中,根据具体的场景和需求选择合适的频段是实现高效、稳定、可靠的射频识别系统的关键。