角点检测的算法

 我来答
倜傥还顺眼灬小雀8
2016-05-26 · 超过11用户采纳过TA的回答
知道答主
回答量:86
采纳率:100%
帮助的人:15.8万
展开全部

SUSAN是Smith和Brady提出的一种图像处理方法,该算法是基于像素领域包含若干元素的近似圆形模板,对每个像素基于该模板领域的图像灰度计算角点响应函数(CRF)的数值,如果大于某阈值且为局部极大值,则认为该点为角点。角点的精度与圆形模板大小无关,圆形模板越大,检测的角点数越多,则计算量也越大,本文圆形模板包含37个元素,该近似圆形模板结构如图1所示。
如图2所示为SUSAN圆形模板与物体的5种几何位置关系,对于图像中非纹理区域的任一点,在以它为中心的模板窗中存在一块亮度与其相同的区域,这块区域即为SUSAN的USAN(Univalve Segment Assimilating Nucleus)区域。USAN区域包含了图像结构的重要信息,由图可知,当模板中心像素点位于区域内部时,USAN的面积最大,当该像素点位于区域边界时,则面积为最大的一半,当该像素点为角点时,USAN区域面积约为最大的1/4。SUSAN根据不同位置时USAN区域的面积来考察当前像素点为区域内部点、边缘点或角点。
USAN区域面积通过圆模板内各像素与中心点像素比较得到的相似点的个数总和来表示,该相似比较函
数为:
其中(x0,y0),(x,y)分别为模板中心像素点和待比较像素点的坐标,t为相似度阈值,本文该值取整幅图像灰度最大值和最小值差值的1/10。
则与中心点像素相似点的个数为:
本文取图像每11×11领域范围内来搜索CRF为极大值的像素点,当该像素点CRF数值大于控制阈值thresh (本文取13),则将该点标记为角点。角点(十字形标识)检测效果如图3所示。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
东莞大凡
2024-11-14 广告
标定板认准大凡光学科技,专业生产研发厂家,专业从事光学影像测量仪,光学投影测量仪.光学三维测量仪,光学二维测量仪,光学二维测量仪,光学三维测量仪,光学二维测量仪.的研发生产销售。东莞市大凡光学科技有限公司创立于 2018 年,公司总部坐落于... 点击进入详情页
本回答由东莞大凡提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式