初中数学九大什么三大什么
初中数学九大公理,三大重要思想。公理是人们在长期实践中总结出来的、正确的命题,它不需要用其他的方法来证明。
一、九大公里:
1 、过两点有且只有一条直线
2 、两点之间线段最短
3、 同角或等角的补角相等
4 、同角或等角的余角相等
5 、过一点有且只有一条直线和已知直线垂直
6、 直线外一点与直线上各点连接的所有线段中,垂线段最短
7 、平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8 、如果两条直线都和第三条直线平行,这两条直线也互相平行
9 、内错角相等,同旁内角互补,同位角相等,两直线平行
二、三大重要思想:
1、“方程”思想
所谓的“方程”思想就是对于数学问题,特别是现实当中碰到的未知量和已知量的错综复杂的关系,善于用“方程”的观点去构建有关的方程,进而用解方程的方法去解决它。
2、“数形结合”的思想
要重视“数形结合”的思维训练,任何一道题,只要与“形”沾得上一点边,就应该根据题意画出草图来分析一番,这样做,不但直观,而且全面,整体性强,容易找出切入点,对解题大有益处。
3、“对应”的思想
比如:我们在计算或化简中,将对应公式的左边,对应a,y对应b,再利用公式的右边直接得出原式的结果即,这就是运用“对应”的思想和方法来解题。
初二、初三我们还将看到数轴上的点与实数之间的一一对应,直角坐标平面上的点与一对有序实数之间的一一对应,函数与其图象之间的对应。
扩展资料:
“公理”,以传统的术语来说,是指在许多科学分支中所共有的一个不证自明的假设。在各种科学领域的基础中,或许会有某些未经证明而被接受的附加假定,此类假定称为“公设”。
公理是许多科学分支所共有的,而各个科学分支中的公设则是不同的。公设的有效性必须建立在现实世界的经验上。
传统的做法在《几何原本》中很好地描绘了出来,其中给定一些公设(从人们的经验中总结出的几何常识事实),以及一些“公理”(极基本、不证自明的断言)。公理的正确性是在实践中得以证实的,是被大家公认的,不再需要其他的证明,并且它可以作为证明其他真命题的依据。
参考资料:百度百科-真命题
九大公里:
1 过两点有且只有一条直线
2 两点之间线段最短
3 同角或等角的补角相等
4 同角或等角的余角相等
5 过一点有且只有一条直线和已知直线垂直
6 直线外一点与直线上各点连接的所有线段中,垂线段最短
7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8 如果两条直线都和第三条直线平行,这两条直线也互相平行
9 内错角相等,同旁内角互补,同位角相等,两直线平行
三大重要思想:
一、“方程”思想
所谓的“方程”思想就是对于数学问题,特别是现实当中碰到的未知量和已知量的错综复杂的关系,善于用“方程”的观点去构建有关的方程,进而用解方程的方法去解决它。
二、“数形结合”的思想
要重视“数形结合”的思维训练,任何一道题,只要与“形”沾得上一点边,就应该根据题意画出草图来分析一番,这样做,不但直观,而且全面,整体性强,容易找出切入点,对解题大有益处。
三、“对应”的思想
比如我们在计算或化简中,将对应公式的左边,对应a,y对应b,再利用公式的右边直接得出原式的结果即。这就是运用“对应”的思想和方法来解题。初二、初三我们还将看到数轴上的点与实数之间的一一对应,直角坐标平面上的点与一对有序实数之间的一一对应,函数与其图象之间的对应。
“对应”的思想在今后的学习中将会发挥越来越大的作用。