在三角形ABC中,∠BAC=90度,AB=AC,BE平分∠ABC,CE⊥BE,求证:CE=1/2BD
2个回答
展开全部
证明:延长CE和BA交于点F
∵BD平分∠ABC →∠CBE=∠EBF
CE⊥BE(BD) →∠CEB=∠FEB
BE是公共边
∴△CEB≌△FEB →CE=EF=1/2CF
∵∠FCA+∠CDE=90=∠ADB+∠ABD,∠CDE=∠ADB,→∠FCA=∠DBA
∠A=90°→∠CAF=∠BAD
AC=AB
∴△CAF≌△BAD →CF=BD
又∵CE=EF=1/2CF(已证)
∴CE=1/2BD
即BD=2CE证明:延长CE和BA交于点F
∵BD平分∠ABC →∠CBE=∠EBF
CE⊥BE(BD) →∠CEB=∠FEB
BE是公共边
∴△CEB≌△FEB →CE=EF=1/2CF
∵∠FCA+∠CDE=90=∠ADB+∠ABD,∠CDE=∠ADB,→∠FCA=∠DBA
∠A=90°→∠CAF=∠BAD
AC=AB
∴△CAF≌△BAD →CF=BD
又∵CE=EF=1/2CF(已证)
∴CE=1/2BD
即BD=2CE
∵BD平分∠ABC →∠CBE=∠EBF
CE⊥BE(BD) →∠CEB=∠FEB
BE是公共边
∴△CEB≌△FEB →CE=EF=1/2CF
∵∠FCA+∠CDE=90=∠ADB+∠ABD,∠CDE=∠ADB,→∠FCA=∠DBA
∠A=90°→∠CAF=∠BAD
AC=AB
∴△CAF≌△BAD →CF=BD
又∵CE=EF=1/2CF(已证)
∴CE=1/2BD
即BD=2CE证明:延长CE和BA交于点F
∵BD平分∠ABC →∠CBE=∠EBF
CE⊥BE(BD) →∠CEB=∠FEB
BE是公共边
∴△CEB≌△FEB →CE=EF=1/2CF
∵∠FCA+∠CDE=90=∠ADB+∠ABD,∠CDE=∠ADB,→∠FCA=∠DBA
∠A=90°→∠CAF=∠BAD
AC=AB
∴△CAF≌△BAD →CF=BD
又∵CE=EF=1/2CF(已证)
∴CE=1/2BD
即BD=2CE
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询