公理集合论的正则公理

 我来答
风纪社002A2
2016-05-27 · 超过54用户采纳过TA的回答
知道答主
回答量:178
采纳率:0%
帮助的人:53.4万
展开全部

正则公理与其他公理不同,它不是断言某些集合的存在,而是限制一些集合的存在。提出它是为了研究ZF的模型。在ZF中可定义的数学对象都不以自身为元素;也未发现有集合x,y,具有x∈y并且y∈x的性质或者集合序列x1,x2,…,满足:。1917年 D.米里马诺夫首先提出良基集的概念。1922年弗伦克尔在策梅洛原来的公理系统补充了一条公理名曰限制公理,顾名思义,它是给出某种限制,以排除那些非良基集。1925年J.冯·诺伊曼,称它为正则公理。1930年策梅洛也独立地引入了这条公理,并称它为基础公理。从而完成了ZF。
冯·诺伊曼给出了一个分层其中V0=═(α为任一序数,F(Vα)表Vα的幂集。这样,正则公理肯定了每一集合必在某一Vα中。若再引进γ,称为x的秩。从而,即可依秩来作超限归纳。
在AC成立的条件下,每一群都同构于一个在π中的群:每一拓扑空间都同构于一个在Π中的拓扑空间,等等。而在数学讨论中常常是把同构的对象视作同一的;故正则公理并不给讨论带来局限。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式