高数,求解,谢谢!
展开全部
解:
首先考查连续性,根据连续性性质:
lim(x→0-)f(x)
=lim(x→0-) x³
=0
lim(x→0+)f(x)
=lim(x→0+) x²cos(1/x)
∵-x²≤x²cos(1/x)≤x²
而:lim(x→0+) -x²=lim(x→0+) x²=0
根据夹逼准则:
lim(x→0+) x²cos(1/x) =0
∴lim(x→0+)f(x)=0
综上:lim(x→0-)f(x)=lim(x→0+)f(x)=f(0)=0
∴x=0是该函数的连续点!
对于x=1而言,此时该函数为:
f(x)=x²cos(1/x)
lim(x→1-)f(x)=lim(x→1+)f(x)=f(1)=cos1
∴x=1是该函数的连续点!
f'(0)
=lim(x→0) [f(x)-f(0)]/(x-0)
=lim(x→0) x²cos(1/x)/x
=lim(x→0) xcos(1/x)
∵-x≤xcos(1/x)≤x
而:lim(x→0) -x=lim(x→0) x=0
由夹逼准则:
而:lim(x→0) xcos(1/x) =0
∴f'(0)=0存在
即:x=0处f(x)可导!
f'(1)
=lim(x→1) [f(x)-f(1)]/(x-1)
=lim(x→1) [x²cos(1/x)-cos1]/(x-1)
=lim(x→1) [x²cos(1/x)-x²cos1+x²cos1-cos1]/(x-1)
=lim(x→1) {x²[cos(1/x)-cos1]+cos1(x²-1)}/(x-1)
又∵
lim(x→1) x²[cos(1/x)-cos1]/(x-1)
=lim(x→1) x²(-2)·sin{[(1/x)+1]/2}·{sin[(1/x)-1]/2} /(x-1)
=lim(x→1) x²(-2)·sin{[(1/x)+1]/2}·{[(1/x)-1]/2} /(x-1) ...........................(等价无穷小替换)
=lim(x→1) 2x²·sin{[(1/x)+1]/2}·[(x-1)/2x]/(x-1)
=lim(x→1) xsin{[(1/x)+1]/2}
=sin1
lim(x→1) cos1(x²-1)/(x-1)
=lim(x→1) cos1(x+1)(x-1)/(x-1)
=lim(x→1) cos1(x+1)
=2cos1
因此:
f'(1)
=lim(x→1) {x²[cos(1/x)-cos1]+cos1(x²-1)}/(x-1)
=lim(x→1) x²[cos(1/x)-cos1]/(x-1)+lim(x→1) cos1(x²-1)/(x-1)
=sin1+2cos1
即:x=1处f(x)可导!
首先考查连续性,根据连续性性质:
lim(x→0-)f(x)
=lim(x→0-) x³
=0
lim(x→0+)f(x)
=lim(x→0+) x²cos(1/x)
∵-x²≤x²cos(1/x)≤x²
而:lim(x→0+) -x²=lim(x→0+) x²=0
根据夹逼准则:
lim(x→0+) x²cos(1/x) =0
∴lim(x→0+)f(x)=0
综上:lim(x→0-)f(x)=lim(x→0+)f(x)=f(0)=0
∴x=0是该函数的连续点!
对于x=1而言,此时该函数为:
f(x)=x²cos(1/x)
lim(x→1-)f(x)=lim(x→1+)f(x)=f(1)=cos1
∴x=1是该函数的连续点!
f'(0)
=lim(x→0) [f(x)-f(0)]/(x-0)
=lim(x→0) x²cos(1/x)/x
=lim(x→0) xcos(1/x)
∵-x≤xcos(1/x)≤x
而:lim(x→0) -x=lim(x→0) x=0
由夹逼准则:
而:lim(x→0) xcos(1/x) =0
∴f'(0)=0存在
即:x=0处f(x)可导!
f'(1)
=lim(x→1) [f(x)-f(1)]/(x-1)
=lim(x→1) [x²cos(1/x)-cos1]/(x-1)
=lim(x→1) [x²cos(1/x)-x²cos1+x²cos1-cos1]/(x-1)
=lim(x→1) {x²[cos(1/x)-cos1]+cos1(x²-1)}/(x-1)
又∵
lim(x→1) x²[cos(1/x)-cos1]/(x-1)
=lim(x→1) x²(-2)·sin{[(1/x)+1]/2}·{sin[(1/x)-1]/2} /(x-1)
=lim(x→1) x²(-2)·sin{[(1/x)+1]/2}·{[(1/x)-1]/2} /(x-1) ...........................(等价无穷小替换)
=lim(x→1) 2x²·sin{[(1/x)+1]/2}·[(x-1)/2x]/(x-1)
=lim(x→1) xsin{[(1/x)+1]/2}
=sin1
lim(x→1) cos1(x²-1)/(x-1)
=lim(x→1) cos1(x+1)(x-1)/(x-1)
=lim(x→1) cos1(x+1)
=2cos1
因此:
f'(1)
=lim(x→1) {x²[cos(1/x)-cos1]+cos1(x²-1)}/(x-1)
=lim(x→1) x²[cos(1/x)-cos1]/(x-1)+lim(x→1) cos1(x²-1)/(x-1)
=sin1+2cos1
即:x=1处f(x)可导!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询