著名数学家的小故事

要5篇,300字以上!!!... 要5篇,300字以上!!! 展开
 我来答
吴中应XF
推荐于2017-09-17 · TA获得超过5322个赞
知道小有建树答主
回答量:243
采纳率:0%
帮助的人:0
展开全部
1947年小约翰-福布斯-纳什(罗素-克洛饰,Russell Crowe)进入普林斯顿大学学习并研究数学。这个"神秘的来自西弗吉尼亚的天才"并没有上预备班的经历,也没有遗产或富足的亲戚资助他进入“常春藤盟校”(Ivy League)----但普林斯顿最具声誉的奖学金证明他确实属于普林斯顿这个团队。 这对纳什或是对普林斯顿来说是很不容易的。优雅的社会交际他根本不屑一顾,上课也提不起什么兴致。他整天沉迷着的只是一件事:寻找一个真正有创意的理论。他深信这才是他应该从事的事情。 普林斯顿的数学系竞争十分激烈,纳什的一些同学也十分乐于看到纳什的失败。但是,他们仍然十分容忍他,有意无意地怂恿他当个伟人。一个晚上他与一些同学在当地洒吧娱乐,当时他们对一个热情的金发碧眼女人的反应引发了他的灵感。当纳什观察着这些竞争对手时,常常在他脑海里酝酿的想法突然变得清晰起来。他随之撰写出了关于博奕论的论文----“竞争中的数学”----大胆地将现代经济之父亚当-斯密(Adam Smith)的理论作出了不同的解释。这个已经被人们接受了150年的思想突然变得陈旧过时了,纳什的生活也从此发生了改变。 纳什后来获得了在麻省理工学院(MIT)进行研究和教学的工作,这可是一个众人觊觎的工作,但是他对这些并不满意。科学曾为美国在第二次世界大战中的获胜发挥了巨大的作用。现在,冷战盛行,纳什渴望在这场新的冲突中发挥自己的优势。他的愿望得到了实现,神秘兮兮的威廉-帕彻(William Parcher,埃德-哈里斯饰,Ed Harris)招募他参加一个绝密的任务,破解敌人的密码。 纳什在麻省理工学院工作的同时,全身心地投入到这个耗神的工作中。在这里,纳什受到了一种全新的挑战,但是这次的挑战却是来自光彩照人的艾丽西亚-拉迪(Alicia Larde,珍妮弗-康奈利饰,Jennifer Connelly),一个物理系学生,她向纳什引入了一个从来没有认真考虑过的观念----爱情。 不久,纳什和艾丽西亚结婚了,但是他不能告诉她他正在为帕彻所从事的危险项目。这项工作稍有不慎泄了密,后果将不堪设想。纳什一直是悄悄地在干,他被这项工作深深地迷住了,并最终迷失在这些无法抵御的错觉中。经诊断,他得的是妄想型精神分裂症。 纳什的遭遇让艾丽西亚吓坏了,她挣扎在被毁天才爱的重压下。随着每一天都似乎会给他们带来新的恐怖,这对令人羡慕的伴侣已失去了当初让人羡慕的份儿。但是艾丽西亚仍然在她爱着的男人身上发现了他的超凡魅力,这也是支撑她对他承诺的源泉所在。受到她那坚贞不渝的爱情和忠诚的感动,纳什最终决定与这场被认为是只能好转、无法治愈的疾病作斗争。 谦卑的纳什目标很简单,但要实现这些目标却是难上加难。处在病魔的重压之下,他仍然被那令人兴奋的数学理论所驱使着,他决心寻找自己的恢复常态的方法。绝对是通过意志的力量,他才一如既往地继续进行着他的工作,并于1994年获得了诺贝尔奖。与此同时,他在博奕论方面颇具前瞻性的工作成为20世纪最具影响力的理论,而纳什也成了一个不仅拥有美好情感,并具有美丽心灵

两位卓越的女数学家
第一位女教授——苏菲娅•柯瓦列夫斯卡娅
苏菲娅出生在沙皇俄国立陶宛边界的一座贵族庄园里,他父亲是退役的炮兵团团长.她很小就对数学很痴迷,经常对着墙壁上的数学公式和符号,一看就是好半天,原来,她房间里的糊墙纸是用高等数学的讲义做成的.苏菲娅14岁时便能够独立推导出三角公式,被称为“新巴斯卡”.随着时间的流逝,苏菲娅逐渐长大成人,她对数学的兴趣也与日俱增.但那时正处于沙皇时代,妇女是不允许注册高等学校学习的.而她的父亲又一心想让她像别的贵族姑娘一样,步人社交界,对她想学数学的心愿横加阻拦.于是,苏菲娅不顾父母的反对,与年轻的古生物学家柯瓦列夫斯基“假结婚”,来到德国的海德尔堡.但在那里,妇女听课要有一个专门的委员会认可才行.经过努力,她被允许旁听基础课.在此期间,她勤奋好学,掌握了深奥的数学知识,轰动了整个海德尔堡,成为人们谈论的话题.可她只被允许听了三个学期的课,便不得不离开了那里.苏菲娅深造心切,又慕名前往柏林工学院,打算去听著名数学家维尔斯特拉斯的课.但遗憾的是,柏林的大学不允许妇女听教授的课,苏菲娅到处吃闭门羹,最后,只好抱一线希望登门到维尔斯特拉斯家求教.维尔斯特拉斯(1815—1899)是一位德高望重的老数学家,他接见了苏菲娅,并向他提了一些超椭圆方面的问题,这些问题在当时都很新颖,没想到这位貌不惊人的女青年,解题技巧娴熟,思维方法独特,给老教授留下了深刻的印象.于是,维尔斯特拉斯破例答应苏菲娅每星期日在家里给她上课,每周还另抽一日到她的寓所登门授课.这样,苏菲娅在维尔斯特拉斯的悉心指导下学习了4年.她回忆这段经历时说:“这样的学习,对我整个数学生涯影响至深,它最终决定了我以后的科学研究方向.” 苏菲娅得到了维尔斯特拉斯的鼓励和指点.更加有了攀登科学高峰的勇气.她经过了4年的刻苦努力.写出了三篇出色的论文,引起了强烈的反响.这是史无前例的开创性工作.1874年,在维尔斯特拉斯的推荐下,24岁的苏菲娅荣获了德国第一流学府——哥廷根大学博士学位,成为世界上首屈一指的女数学家. 获得博士学位的苏菲娅,怀若一颗赤子之心回到了祖国,可俄国还是同她出国之前一样黑暗.她在祖国无法立足,只好又回到柏林.她根据维尔斯特拉斯的建议,研究光线在晶体中的折线问题.在1883年奥德赛科学大会上,她以出色的研究成果作了报告.可命运偏偏与她作对,当年春天.她丈夫因破产而自杀.听到这个不幸的消息,肝肠寸断.她把自己关在房间里,四天不吃不喝,第五天昏迷过去.不幸的遭遇,并没有打跨苏菲娅的斗志,第六天苏醒过后又开始顽强的工作.在瑞典数学家米达•列佛勒的帮助下,经过一番周折,苏菲娅才得以担任斯德哥尔摩大学的讲师,但当地报纸公然对她攻击:“一个女人当教授是有害和不愉快的现象——甚至,可以说那种人是一个怪物.”但苏菲娅无所畏惧,像男人那样走上了讲台.以生动的讲课,赢得了学生的热爱,击败了“男人样样胜过女人”的偏见.一年后,她被正式聘为高等分析教授,后来又兼聘为力学教授.苏菲娅在瑞典的任期满了,她一心想回国任教,可没能成功,只好在国外继续任教. 1891年,苏菲娅患肺炎因误诊导致病情恶化,与世长辞.她为争取妇女的自由斗争做出了艰苦努力,是妇女攀登科学高峰的光辉榜样.

在逆境中成长的女数学家诺德
1933年1月,希特勒一上台,就发布第一号法令,把犹太人比作“恶魔”,叫嚣着要粉碎“恶魔的权利”.不久,哥廷根大学接到命令,要学校辞退所有从事教育工作的纯犹太血统的人.在被驱赶的学者中,有一名妇女叫爱米•诺德(A.E.Noether 1882—1935),她是这所大学的教授,时年5l岁.她主持的讲座被迫停止,就连微薄的薪金也被取消.这位学术上很有造诣的女性,面对困境,却心地坦然,因为她一生都是在逆境中度过的.诺德生长在犹太籍数学教授的家庭里,从小就喜欢数学.1903年,21岁的诺德考进哥廷根大学,在那里,她听了克莱因、希尔伯特、闽可夫斯基等人的课,与数学解下了不解之缘.她学生时代就发表了几篇高质量的论文,25岁便成了世界上屈指可数的女数学博士.诺德在微分不等式、环和理想子群等的研究方面做出了杰出的贡献.但由于当时妇女地位低下,她连讲师都评不上,在大数学家希尔伯特的强烈支持下,诺德才由希尔伯特的“私人讲师”成为哥廷根大学第一名女讲师.接下来,由于她科研成果显著,又是在希尔伯特的推荐下,取得了“编外副教授”的资格,虽然她比起很多“教授”更有实力.
诺德热爱数学教育事业,善于启发学生思考.她终生未婚,却有许许多多“孩子”.她与学生交往密切,和蔼可亲,人们亲切地把她周围的学生称为“诺德的孩子们”.我国代数学家曾炯之就是诺德“孩子”们中的一个.在希特勒的淫威下,诺德被迫离开哥廷根大学,去了美国工作.在美国,她同样受到学生们的尊敬和爱戴,同样有她的“孩子们”.1934年9月,美国设立了以诺德命名的博士后奖学金.不幸的是,诺德在美国工作不到两年,便死于外科手术,终年53岁.她的逝世,令很多数学同僚无限悲痛.爱因斯坦在《纽约时报》发表悼文说:“根据现在的权威数学家们的判断,诺德女士是自妇女受高等教育以来最重要的富于创造性数学天才.”

几何之父——欧几里德
我们现在学习的几何学,是由古希腊数学家欧几里德(公无前330—前275)创立的。他在公元前300年编写的《几何原本》,2000多年来都被看作学习几何的标准课本,所以称欧几里德为几何之父。欧几里德生于雅典,接受了希腊古典数学及各种科学文化,30岁就成了有名的学者。应当时埃及国王的邀请,他客居亚历山大城,一边教学,一边从事研究。古希腊的数学研究有着十分悠久的历史,曾经出过一些几何学著作,但都是讨论某一方面的问题,内容不够系统。欧几里德汇集了前人的成果,采用前所未有的独特编写方式,先提出定义、公理、公设,然后由简到繁地证明了一系列定理,讨论了平面图形和立体图形,还讨论了整数、分数、比例等等,终于完成了《几何原本》这部巨著。《原本》问世后,它的手抄本流传了1800多年。1482年印刷发行以后,重版了大约一千版次,还被译为世界各主要语种。13世纪时曾传入中国,不久就失传了,1607年重新翻译了前六卷,1857年又翻译了后九卷。欧几里德善于用简单的方法解决复杂的问题。他在人的身影与高正好相等的时刻,测量了金字塔影的长度,解决了当时无人能解的金字塔高度的大难题。他说:“此时塔影的长度就是金字塔的高度。”欧几里德是位温良敦厚的教育家。欧几里得也是一位治学严谨的学者,他反对在做学问时投机取巧和追求名利,反对投机取巧、急功近利的作风。尽管欧几里德简化了他的几何学,国王(托勒密王)还是不理解,希望找一条学习几何的捷径。欧几里德说:“在几何学里,大家只能走一条路,没有专为国王铺设的大道。”这句话成为千古传诵的学习箴言。一次,他的一个学生问他,学会几何学有什么好处?他幽默地对仆人说:“给他三个钱币,因为他想从学习中获取实利。”
20世纪最杰出的数学家之一的冯•诺依曼.众所周知,1946年发明的电子计算机,大大促进了科学技术的进步,大大促进了社会生活的进步.鉴于冯•诺依曼在发明电子计算机中所起到关键性作用,他被西方人誉为"计算机之父".1911年一1921年,冯•诺依曼在布达佩斯的卢瑟伦中学读书期间,就崭露头角而深受老师的器重.在费克特老师的个别指导下并合作发表了第一篇数学论文,此时冯•诺依曼还不到18岁.
伽罗华生于离巴黎不远的一个小城镇,父亲是学校校长,还当过多年市长。家庭的影响使伽罗华一向勇往直前,无所畏惧。1823年,12岁的伽罗华离开双亲到巴黎求学,他不满足呆板的课堂灌输,自己去找最难的数学原著研究,一些老师也给他很大帮助。老师们对他的评价是“只宜在数学的尖端领域里工作”。
阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古。父亲是位数学家兼天文学家。阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去学习。在这座号称"智慧之都"的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得学生埃拉托塞和卡农的门生,钻研《几何原本》。

祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形, 求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间.并得出了π分数形式的近似值,取为约率 ,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数.祖冲之究竟用什么方法得出这一结果,现在无从考查.若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的.祖冲之计算得出的密率, 外国数学家获得同样结果,已是一千多年以后的事了.为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"祖率".

塞乐斯生于公元前624年,是古希腊第一位闻名世界的大数学家。他原是一位很精明的商人,靠卖橄榄油积累了相当财富后,塞乐斯便专心从事科学研究和旅行。他勤奋好学,同时又不迷信古人,勇于探索,勇于创造,积极思考问题。他的家乡离埃及不太远,所以他常去埃及旅行。在那里,塞乐斯认识了古埃及人在几千年间积累的丰富数学知识。他游历埃及时,曾用一种巧妙的方法算出了金字塔的高度,使古埃及国王阿美西斯钦羡不已。
_WarCraft_III_
2008-08-10
知道答主
回答量:12
采纳率:0%
帮助的人:0
展开全部
数学家的故事——苏步青

苏步青1902年9月出生在浙江省平阳县的一个山村里。虽然家境清贫,可他父母省吃俭用,拼死拼活也要供他上学。他在读初中时,对数学并不感兴趣,觉得数学太简单,一学就懂。可量,后来的一堂数学课影响了他一生的道路。
那是苏步青上初三时,他就读浙江省六十中来了一位刚从东京留学归来的教数学课的杨老师。第一堂课杨老师没有讲数学,而是讲故事。他说:“当今世界,弱肉强食,世界列强依仗船坚炮利,都想蚕食瓜分中国。中华亡国灭种的危险迫在眉睫,振兴科学,发展实业,救亡图存,在此一举。‘天下兴亡,匹夫有责’,在座的每一位同学都有责任。”他旁征博引,讲述了数学在现代科学技术发展中的巨大作用。这堂课的最后一句话是:“为了救亡图存,必须振兴科学。数学是科学的开路先锋,为了发展科学,必须学好数学。”苏步青一生不知听过多少堂课,但这一堂课使他终身难忘。
杨老师的课深深地打动了他,给他的思想注入了新的兴奋剂。读书,不仅为了摆脱个人困境,而是要拯救中国广大的苦难民众;读书,不仅是为了个人找出路,而是为中华民族求新生。当天晚上,苏步青辗转反侧,彻夜难眠。在杨老师的影响下,苏步青的兴趣从文学转向了数学,并从此立下了“读书不忘救国,救国不忘读书”的座右铭。一迷上数学,不管是酷暑隆冬,霜晨雪夜,苏步青只知道读书、思考、解题、演算,4年中演算了上万道数学习题。现在温州一中(即当时省立十中)还珍藏着苏步青一本几何练习薄,用毛笔书写,工工整整。中学毕业时,苏步青门门功课都在90分以上。
17岁时,苏步青赴日留学,并以第一名的成绩考取东京高等工业学校,在那里他如饥似渴地学习着。为国争光的信念驱使苏步青较早地进入了数学的研究领域,在完成学业的同时,写了30多篇论文,在微分几何方面取得令人瞩目的成果,并于1931年获得理学博士学位。获得博士之前,苏步青已在日本帝国大学数学系当讲师,正当日本一个大学准备聘他去任待遇优厚的副教授时,苏步青却决定回国,回到抚育他成长的祖任教。回到浙大任教授的苏步青,生活十分艰苦。面对困境,苏步青的回答是“吃苦算得了什么,我甘心情愿,因为我选择了一条正确的道路,这是一条爱国的光明之路啊!”
这就是老一辈数学家那颗爱国的赤子之心

数学家的墓志铭

一些数学家生前献身于数学,死后在他们的墓碑上,刻着代表着他们生平业绩的标志。
古希腊学者阿基米德死于进攻西西里岛的罗马敌兵之手(死前他还在主:“不要弄坏我的圆”。)后,人们为纪念他便在其墓碑上刻上球内切于圆柱的图形,以纪念他发现球的体积和表面积均为其外切圆柱体积和表面积的三分之二。 德国数学家高斯在他研究发现了正十七边形的尺规作法后,便放弃原来立志学文的打算 而献身于数学,以至在数学上作出许多重大贡献。甚至他在遗嘱中曾建议为他建造正十七边形的棱柱为底座的墓碑。
16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数后35位,后人称之为鲁 道夫数,他死后别人便把这个数刻到他的墓碑上。 瑞士数学家雅谷·伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上 就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”。这是一句既刻划螺线性质又象征他对数学热爱的双关语

祖冲之(公元429-500年)是我国南北朝时期,河北省涞源县人.他从小就阅读了许多天文、数学方面的书籍,勤奋好学,刻苦实践,终于使他成为我国古代杰出的数学家、天文学家.
祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形, 求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间.并得出了π分数形式的近似值,取为约率 ,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数.祖冲之究竟用什么方法得出这一结果,现在无从考查.若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的.祖冲之计算得出的密率, 外国数学家获得同样结果,已是一千多年以后的事了.为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"祖率".
祖冲之博览当时的名家经典,坚持实事求是,他从亲自测量计算的大量资料中对比分析,发现过去历法的严重误差,并勇于改进,在他三十三岁时编制成功了《大明历》,开辟了历法史的新纪元.
祖冲之还与他的儿子祖暅(也是我国著名的数学家)一起,用巧妙的方法解决了球体体积的计算.他们当时采用的一条原理是:"幂势既同,则积不容异."意即,位于两平行平面之间的两个立体,被任一平行于这两平面的平面所截,如果两个截面的面积恒相等,则这两个立体的体积相等.这一原理,在西文被称为卡瓦列利原理, 但这是在祖氏以后一千多年才由卡氏发现的.为了纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为"祖暅原理".

数学之父—泰勒斯(Thales)
泰勒斯生于公元前624年,是古希腊第一位闻名世界的大数学家。他原是一位很精明的商人,靠卖橄榄油积累了相当财富后,泰勒斯便专心从事科学研究和旅行。他勤奋好学,同时又不迷信古人,勇于探索,勇于创造,积极思考问题。他的家乡离埃及不太远,所以他常去埃及旅行。在那里,泰勒斯认识了古埃及人在几千年间积累的丰富数学知识。他游历埃及时,曾用一种巧妙的方法算出了金字塔的高度,使古埃及国王阿美西斯钦羡不已。 泰勒斯的方法既巧妙又简单:选一个天气晴朗的日子,在金字塔边竖立一根小木棍,然后观察木棍阴影的长度变化,等到阴影长度恰好等于木棍长度时,赶紧测量金字塔影的长度,因为在这一时刻,金字塔的高度也恰好与塔影长度相等。也有人说,泰勒斯是利用棍影与塔影长度的比等于棍高与塔高的比算出金字塔高度的。如果是这样的话,就要用到三角形对应边成比例这个数学定理。泰勒斯自夸,说是他把这种方法教给了古埃及人但事实可能正好相反,应该是埃及人早就知道了类似的方法,但他们只满足于知道怎样去计算,却没有思考为什么这样算就能得到正确的答案。在泰勒斯以前,人们在认识大自然时,只满足于对各类事物提出怎么样的解释,而泰勒斯的伟大之处,在于他不仅能作出怎么样的解释,而且还加上了为什么的科学问号。古代东方人民积累的数学知识,主要是一些由经验中总结出来的计算公式。泰勒斯认为,这样得到的计算公式,用在某个问题里可能是正确的,用在另一个问题里就不一定正确了,只有从理论上证明它们是普遍正确的以后,才能广泛地运用它们去解决实际问题。在人类文化发展的初期,泰勒斯自觉地提出这样的观点,是难能可贵的。它赋予数学以特殊的科学意义,是数学发展史上一个巨大的飞跃。所以泰勒斯素有数学之父的尊称,原因就在这里。
泰勒斯最先证明了如下的定理:
1.圆被任一直径二等分。
2.等腰三角形的两底角相等。
3.两条直线相交,对顶角相等。
4.半圆的内接三角形,一定是直角三角形。
5.如果两个三角形有一条边以及这条边上的两个角对应相等,那么这两个三角形全等。
这个定理也是塞乐斯最先发现并最先证明的,后人常称之为塞乐斯定理。相传泰勒斯证明这个定理后非常高兴,宰了一头公牛供奉神灵。后来,他还用这个定理算出了海上的船与陆地的距离。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
s龙的传人s
2008-08-07 · TA获得超过937个赞
知道答主
回答量:94
采纳率:0%
帮助的人:54.5万
展开全部
希尔伯特,D.(Hilbert,David,1862~1943)德国数学家,生于东普鲁士哥尼斯堡(前苏联加里宁格勒)附近的韦劳。中学时代,希尔伯特就是一名勤奋好学的学生,对于科学特别是数学表现出浓厚的兴趣,善于灵活和深刻地掌握以至应用老师讲课的内容。1880年,他不顾父亲让他学法律的意愿,进入哥尼斯堡大学攻读数学。1884年获得博士学位,后来又在这所大学里取得讲师资格和升任副教授。1893年被任命为正教授,1895年,转入格廷根大学任教授,此后一直在格廷根生活和工作,于是930年退休。在此期间,他成为柏林科学院通讯院士,并曾获得施泰讷奖、罗巴切夫斯基奖和波约伊奖。1930年获得瑞典科学院的米塔格-莱福勒奖,1942年成为柏林科学院荣誉院士。希尔伯特是一位正直的科学家,第一次世界大战前夕,他拒绝在德国政府为进行欺骗宣传而发表的《告文明世界书》上签字。战争期间,他敢干公开发表文章悼念"敌人的数学家"达布。希特勒上台后,他抵制并上书反对纳粹政府排斥和迫害犹太科学家的政策。由于纳粹政府的反动政策日益加剧,许多科学家被迫移居外国,曾经盛极一时的格廷根学派衰落了,希尔伯特也于1943年在孤独中逝世。
希尔伯特是对二十世纪数学有深刻影响的数学家之一。他领导了著名的格廷根学派,使格廷根大学成为当时世界数学研究的重要中心,并培养了一批对现代数学发展做出重大贡献的杰出数学家。希尔伯特的数学工作可以划分为几个不同的时期,每个时期他几乎都集中精力研究一类问题。按时间顺序,他的主要研究内容有:不变式理论、代数数域理论、几何基础、积分方程、物理学、一般数学基础,其间穿插的研究课题有:狄利克雷原理和变分法、华林问题、特征值问题、"希尔伯特空间"等。在这些领域中,他都做出了重大的或开创性的贡献。希尔伯特认为,科学在每个时代都有它自己的问题,而这些问题的解决对于科学发展具有深远意义。他指出:"只要一门科学分支能提出大量的问题,它就充满着生命力,而问题缺乏则预示着独立发展的衰亡和终止。"在1900年巴黎国际数学家代表大会上,希尔伯特发表了题为《数学问题》的著名讲演。他根据过去特别是十九世纪数学研究的成果和发展趋势,提出了23个最重要的数学问题。这23个问题通称希尔伯特问题,后来成为许多数学家力图攻克的难关,对现代数学的研究和发展产生了深刻的影响,并起了积极的推动作用,希尔伯特问题中有些现已得到圆满解决,有些至今仍未解决。他在讲演中所阐发的想信每个数学问题都可以解决的信念,对于数学工作者是一种巨大的鼓舞。他说:"在我们中间,常常听到这样的呼声:这里有一个数学问题,去找出它的答案!你能通过纯思维找到它,因为在数学中没有不可知。"三十年后,1930年,在接受哥尼斯堡荣誉市民称号的讲演中,针对一些人信奉的不可知论观点,他再次满怀信心地宣称:"我们必须知道,我们必将知道。"希尔伯特的《几何基础》(1899)是公理化思想的代表作,书中把欧几里得几何学加以整理,成为建立在一组简单公理基础上的纯粹演绎系统,并开始探讨公理之间的相互关系与研究整个演绎系统的逻辑结构。1904年,又着手研究数学基础问题,经过多年酝酿,于二十年代初,提出了如何论证数论、集合论或数学分析一致性的方案。他建议从若干形式公理出发将数学形式化为符号语言系统,并从不假定实无穷的有穷观点出发,建立相应的逻辑系统。然后再研究这个形式语言系统的逻辑性质,从而创立了元数学和证明论。希尔伯特的目的是试图对某一形式语言系统的无矛盾性给出绝对的证明,以便克服悖论所引起的危机,一劳永逸地消除对数学基础以及数学推理方法可靠性的怀疑。然而,1930年,年青的奥地利数理逻辑学家哥德尔(K.G?del,1906~1978)获得了否定的结果,证明了希尔伯特方案是不可能实现的。但正如哥德尔所说,希尔伯特有关数学基础的方案"仍不失其重要性,并继续引起人们的高度兴趣"。希尔伯特的著作有《希尔伯特全集》(三卷,其中包括他的著名的《数论报告》)、《几何基础》、《线性积分方程一般理论基础》等,与其他合著有《数学物理方法》、《理论逻辑基础》、《直观几何学》、《数学基础》。

希尔伯特问题研究进展

问 题 推动发展的领域 解 决 情 况
1.连续统假设 公理化集合论 1963年,Paul J.Cohen[美国]在下述意义下证明了第一问题是不可解的,即:连续统假设的真伪不可能在Zermelo-Fraenkel公理系统内判明。
2.算术公理的相容性 数学基础 Hilbert证明算术公理相容性的设想,后来发展为系统"Hilbert计划",但1931年Godel的"不完备定理"提出用"元数学"证明算术公理相容性之不可能。数学相容性问题至今尚未解决。
3.两等高等底的四面体体积之相等 几何基础 这问题很快(1900年)即由Hilbert的学生M.Dehn给出肯定解答。
4.直线作为两点间最短距离问题 几何基础 这问题提得过于一般。Hilbert之后,许多数学家致力于构造和探讨各种特殊的度量几何,在研究第四问题上取得很大进展,但问题并未完全解决。
5.不要定义群的函数的可微性假设的李群概念 拓扑群论 经过漫长的努力,这个问题于1952年由Glenson、Montgomery、Zippin等人[美国]最后解决,答案是肯定的。
6.物理公式的数学处理 数学物理 在量子力学、热力学等部门,公理化方法已获很大成功,但一般地说,公理化的物理意味着什么,仍是需探讨的问题。至于概率论的公理化,已由A.H.K o лМ o r o p oB[前苏联,1933]等人建立。
7.某些数的无理性与超越性 超越数论 1934年,A.O.г e M ж o H д[前苏联]和Schneider[德国]各自独立解决了这问题的后半部分,即对于任意代数数α≠0,1和任意代数无理数β≠0证明了α攩β搅的超越性,1966年这一结果又被A.Baker等人大大推广和发展了。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
邰明雨as
高粉答主

2020-09-23 · 繁杂信息太多,你要学会辨别
知道答主
回答量:13.1万
采纳率:7%
帮助的人:6278万
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式